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ABSTRACT

j_% In structural engineering it is imperative to design each system
to survive the inputs anticipated over the design life of the
structure. Strong motion inputs cause systems to execute nonlinear
responses, and during the strong motion responses, structures
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accumulate damage. Therefore, the capability to model nonlinear

{2; :§ responses and to assess the damage level in a structure is essential
a2 for optimal design.

&y - Techniques for the diagnosis of damage in inelastic structures
;2‘ D have been developed. The dissipated energy in mechanical systems is
% . taken as a measure of damage accumulation. Two models for the

.-n {‘l

simulation of damaged structural response have been developed. Both
the single-degree-of-freedom and multi-degree-of-freedom systems were
included in the analysis. The objective of this study is to use these
models to estimate the amount of energy dissipated due to a strong

' motion input.

PEL

The resﬁlts show that structural damage can be predicted, even in
the presence of measurement noise.
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CHAPTER 1
INTRODUCTION

1.0 Introduction

When a structure is excited by an external force, it executes a
response determined by the characteristics of both the input and the
structure. One could predict the exact response of a structure, char-
acterized by its geometry and its mechanical properties, if he could
predict inputs exactly; if he had a perfect model for the structure;
and if the mathematical computations were correct. However, since
inputs are random, one cannot perfectly characterize complex struc-
tures, and since mathematical models are not perfect, one can only
estimate the response of a structure.

In structural analysis it is necessary to assess the response of a
structure to dynamic loads, such as blasts and earthquakes. This
procedure, of course, requires the use of a dynamic model which will
permit accurate prediction of the response of a structure. These
structural models are generally chosen to fit experimental data.and to
simplify mathemtical computations.

Most existing structures were designed based on a static model,
and although dynamic properties may be considered in their design, the
design parameters may be inadequate to predict the response to dynamic
load correctly. Considerable work has been performed on identifying
the parameters of mathematical models from dynamic experimental data,
and various approaches have been proposed for predicting system param-
eters based on experimental data.

These identified parameters can be used to predict the dynamic
response of a structure to a different excitation than that used to
test it. The identified parameters also can be used to calculate the
energy dissipation in a hysteretic structure caused by strong
excitation.
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The energy dissipated by a structure during a strong motion
) l' response fs an indication of the structural damage. It is important to
o~ predict how much damage occurs in a structure due to strong motion
because the level of damage is related to the likelihood of structural
failure. When damage does occur, it can appear in different forms,
such as cracks, permanent deformation, or change in characteristic

I PR
L s -
TN

o
% }j frequency.
_é 5 In practice, it may be difficult to assess the damage extent and
4 3 location in a complex structure after an extreme excitation. For exam-

. ple, in a nuclear power plant or buried protection structure, it may be
: {f difficult to assess damage. This difficulty may arise due to the num-
M ber of elements in a structure or the scale of individua) structure
S members .

a

; A certain degree of damage is usually unavoidable when structures
are subjected to strong motion; therefore, estimation of structural
damage is necessary for proper design. At present, the exact criteria
useful in judging the failure of a structural system are not avail-
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ﬁ able. It is Rnown that some of the measures of structural response
:5 related to the occurrence of failure are peak response, energy dissipa-
.ﬂ w tion, plastic deformation, etc. In fact, the failure criteria of any
[ ] practical material are a complicated function of many measures of
A response.
; 7 In this study models are established for single-degree-of-freedom
o ¢l

. (SDF) and multi-degree-of-freedom (MDF) damageable structures. Signals
that can be used to simulate measured data are generated. These are

E ; used to identify the parameters of the structural models. Finally,
T damage measures are computed for the simulated systems and their mathe-
a_-: matical models.
. 1.1 Literature Review
: ;; The present investigation establishes mathematical models for the
X simulation of damaged structural response. The mathematical models are

.
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proposed, then signals which can be used to simulate the input and
response of damaged structures are generated. These signals are used
to identify the model parameters. There are two broad areas in the
literature that are concerned with concepts important in this study.
These are (1) mathematical models for damaged structural systems, and
(2) the identification of structural system parameters. Some papers
from the literature in both these areas are briefly discussed below.

Part of the energy dissipated by a structure is dissipated due to
hysteretic behavior of the structural material. The equation governing
the hysteretic response of a lumped mass system is a second-order,
nonlinear, ordinary differential equation with history-dependent stiff-
ness term. Two models which may approximate the nonlinear system will
be proposed in this study. These are

1. High-order equivalent linear system;
2. Time-varying parameter linear system.

The first model considered in this investigation is a high-order
equivalent linear system. It is assumed that the nonlinear hysteretic
system is approximately governed by a high-order equivalent system.
This model is motivated by studies summarized in the literature. For
example, Lutes and Hseih [1] used a third-order linear system to
approximate a SDF oscillator with bilinear hysteretic yielding behav-
for, excited by stationary white noise. In the linear system, certain
parameters were chosen so that the root mean square displacement and
velocity matched empirical values for the nonlinear system. They
showed that the third-order system gives a better overall prediction of
response buildup than does either the linear SDF system or a two-mode
system.

Lutes [2] used a different type of equivalent linear system to
approximate the nonlinear system. A1l the methods Lutes considered
defined the equivalence either in terms of response displacement level,
velocity level, frequency, or a combination of these. He found that

i N




a particular equivalent linear system can generally only be expected
to match a limited number of response statistics of a particular non-
linear system with a particular type of excitation.

Wen [3] and Wen and Baber [5, 6] have used the equivalent lineari-
zation method to approximately represent the response of a hysteretic
SDF system. They showed that the third order, linear, differential
equation provided a satisfactory representation of the inelastic,
hysteretic systems. This closed form linearization is relatively
simple to formulate which allows ready extension to multi-degree-of-
freedom (MDF) systems. They showed that the equivalent linearization
method gives satisfactory results at all response levels for response
analysis of MDF deteriorating or non-deteriorating systems under random
excitation.

Another study by Wafa [7] demonstrated that the peak response for
an hysteretic SDF system excited by random inputs is closely predicted
by a third order, linear equivalent system. Recent work [8] has also
shown that the high-order linear equivalent model provides a good
approximation to the hysteretic system when the energy dissipated and
frequency shift are concerns. Significantly, the results established
that the parameters of a higher order system can be identified by using
a frequency domain method even when noise is present both in the
forcing and response signals. In contrast, the time domain approach
Y yields poor results in the presence of noise. Because of the frequency
s > domain's preferable application, it will be used to do the most
i _ analysis.
-

The second model is motivated by the fact that structures may
exhibit time-variant nonlinear response to strong motion. This
implies that structure deterioration was in progress during the large
amplitude motion. Such a phenomenon has been recognized and studied in
fj the past. For example, Udwadia and Trifunac [9] and Iemura and
N Jennings [10] carried out an analysis to characterize such behavior in
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terms of a quasi-time-variant linear formulation based on the data
obtained from the San Fernando earthquake of February 9, 1971.

In another study Townsend and Hanson [11] demonstrate time-varying
hysteretic loops by the experimental test of reinforced concrete beam-
column and T-shaped specimens under different loading conditions. In
addition, Uzumeri [12] has also shown the same behavior for an experi-
mental study of cast-in-place reinforced concrete beam-column joints
subjected to simulated seismic loading.

Based on the above referenced investigations involving time-
varying parameters systems, we anticipate that the time-varying param-
eter model will provide a good representation of a hysteretic system.

Many papers in the literature address the problem of damage
assessment; however, few of these treat the mathematical quantification
of damage measures. In the following, some papers which discuss damage
analysis in both quantitative and non-quantitative ways are discussed.

To assess Sstructural damage, it is necessary to first define and
quantify the damage. Yao [13] has examined various definitions of
structural damage and reviewed available methods for damage assess-
ment. In 1971, Wiggins and Moran [14] developed a procedure for grad-
ing existing buildings in Long Beach, California. Damage is assessed on
a point basis, and a total of up to 180 points is assigned to each
structure according to the evaluation of structural components of five
types. In 1975, Culver et al [15] proposed the field evaluation method
(FEM) which is applicable even when building plans are unavailable. In
1980, Bresler et al [16] described their structural and fire evaluation
model, which was developed to provide a broad overview of potential
safety problems for more than 10,000 buildings for a government agency
in the United States. Recently, Ishizuka, Fu, and Yao [17, 18, 19]
suggested a rule-based damage assessment system called SPERIL Version
I. A1l these systems are primarily based on professional experience
and engineering judgment in the decision making process.




0L Ml et et i M et I g e i )

El

ii ) A more mathematical quantification of damage in structures has
ll been used by Ang, and Wen [20]. They used the hysteretic energy
. ’ absorbed and the maximum structural distortion as the function of
E o structural damage. Others who published in this area are Rudd, Yang
~ and Manning [21], Yao [22], Toussi and Yao [23, 24], Chen and Yao [25]
) - and Yao, Toussi, and Sozen [26].
R ¢ An important aspect of the present study is the method used to

identify the parameters of the damaged structure. The literature on
structural identification, in general, is very broad. A few of the
v papers closely related to the present investigation are reviewed here.

- The historical development of research in the area of system
- identification is summarized in the works of Astrom and Eykhoff [27],
- Bekey [28], Bowles and Straeter [29] and Collins, Young, and Keifling

Y. [30]. Many survey papers have been written. For example, Collings, et
N al [30], Sage [31], Rodeman and Yao [32], Chen [33], Hart and Yao [34],
; Ting, Chen, and Yao [35] and Liu and Yao [36] present surveys of struc-
. tural identification.

2 ) The potential for change in structural characteristics due to the

f :5 accumulation of damage exists and can be investigated through observa-

. ‘ tion of structural parameters. Signature analysis techngiues have been

' . used to predict cracking in bridges by Cole [37, 38].

. One important area in system identification permits the analyst to
3 - characterize system modes. An early paper by Kennedy and Pancu [39]
L shows how model parameters can be obtained from a vector representation
of the steady-state response in the complex plane. Later papers in the
same area were written by Bert [40], Bert and Clary [41], Smith [45],
and Trafl-Nash [46]. Some of the difficulties encountered in applying

T the techniques developed in the above papers are described by Nord
S [47].
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The least squares approach to the identification of system param-
eters has been developed in many studies, and is applied in both the
time and frequency domains. (This technique is used in the present
study.) Some papers that have been written on the subject of least
squares parameter estimation are those of Distefano and Rath [48, 49],
Flanelly and Berman [50], Hart and Yao [34], Ibanez [51], Ibrahim
[53-58], Milne [59], Raggett, Rodeman, and Yao [32], Ting, Chen, and
Yao [35], Udwadia and Shaw [61], and Wells [62]. Brieman [63] shows
that for a linear time invariant system, the least square prediction is
optimal. The technique for using the least squares parameter identifi-
cation in the frequency domain was presented by Ibanez [51, 52]. Wang,
Paez, and Ju [8, 66, 67] fgynd that frequency domain approach is well
suited to the identification of parameters for high order linear models ;j
and time varying linear models. !!

.d
)

The effects caused by measurement noise can be important in the
identification of structural system parameters. Kandianis [68] consid-
ered that effect for linear structural systems. His theoretical devel-
opment considered white noise random input. The studies by Wang, Paez,
and Ju [8, 66, 67] show that the parameters of higher order linear and
time varying linear models can be accurately predicted even in the
presence of noise.

1.2 Objective

The determination of the system parameters from suitable experi-
mental observations is a fundamental problem in engineering. Obtaining
a good representation of a system requires all the proper information,
such as well measured data and a suitable model.

The objective of this study is to justify two possible models to
" characterize the behavior of a system. The relative merits for each
model are discussed. Extensive numerical experimentation using simu-
lated data is also presented in order to investigate their feasibility
and accuracy. This study will demonstrate how well the system param-
eters can be identified with and without noise in the measurements.
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Once the parameters are known, the energy dissipated by the system can
be computed. Based on the computed results, one can compare how well
the models performed for a given set of data. The ultimate goal of
this study is to establish structural models useful for other purposes,
such as prediction, design, control, and damage assessment.

The present research has been aimed at the analysis of damage

accumulation in concrete structures. It is assumed that when a con- N
crete structure dissipates energy, it accumulates damage. To justify ;
this assumption some physical experiments have been performed. Specif-

ically, concrete cylinders have been subjected to cyclic loading. The i
energy dissipated in each cylinder was measured and the level of resid- i

ual strength in each cylinder was determined after the load cycling was
complieted. The residual strength was plotted versus energy dissipated.
When the reduction in strength is taken as a measure of damage, this
plot reveals the damage caused by energy dissipation.
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>3 CHAPTER 2
! HIGH ORDER EQUIVALENT LINEARIZATION
i 2.1 Model
“ . The differential equation governing the response of a
- single-degree-of-freedom (SDF) system is
_ mZ+u-=f (2-1)
= where m is the mass of the structure, f is the forcing function,
AL z is the displacement response, dots denote differentiation with
:Ef: respect to time, and u is the restoring force of the structure.
;-: - Equation (2-1) can be used to model the actual system in which u
i & can be a very complicated function. In the present study, t' 2
::f:l hysteretic restoring force, u, is modeled by using the equation
S
3 i J;f'-_o culd) « et 2 (2-2)
"' where the cj, J = 0, 1, ..., Ml are the constants governing
- the system restoring force characteristics, where u(j) denotes
> the jth time derivative of u, and M is a constant denoting the
R order of approximation provided by the linear system. The reason
f-\ for using this model to represent the hysteretics system is that
e “ it displays a hysteretic character that can be made to match the
character of an inelastic structure.
.;-‘. = Combine Equations 2-1 and 2-2 in the following way. Solve
Z:‘f Equation 2-1 for u, then take derivatives of the resulting
5,,: N expression. Use these in Equation 2-2; the result is
L g
-131' 1, Sl 3+ i S5 (j) (j+2) :
n\.j _1.; Co Co ot o (-f + mz ) = f - mZf (2-3)
o “
%
e
o
o
T e A T A T T e Lt e NN e e e e e e e e e e e




where f(j) is the jth derivative of f, and z(j+2) is the (j+2)th
derivative of z. To simplify the identification procedure,
Equation 2-3 was divided by cg. This particular arrangement is
chosen since co should never be 0 for the systems under
consideration.

Consider the case where M is equal to 0. The model in
Equations 2.1 and 2.2 becomes«

m’z‘+%‘1;z+c—tz=f (2-4)
This is simply the second-order linear differential equation
governing the SDF system. However, when the response of the
actual system is linear and damping is viscous, the model of
Equation (2-4) represents the actual system. The restoring force
function for this system is u = (ci1/co)z + (1/cg)z. This model
displays the hysteretic behavior as shown in Figure (2-1).

When the constant M is chosen as 1 in equation 2-2, the
model becomes

mz+u-=f
Cou + C1U = €22 + 2 (2-5)

Combining these equations results in

Cl- PoAg .o C2 _1 = &L. -
F(;mz +mz+-c-62+C°z f"'cof (25)

£ sk i han S g

placement. The parameters for the system and the forcing input

- The parameters of the system in Equation (2-6) can be chosen so
. that the model represents the hysteretic system as well as
Y possible.
i
\ For example, Figure (2-2) shows the hysteretic properties
i éi for an SDF system by plotting the restoring force versus dis-
[
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7i A are given in Figures (2-2). This study will consider both the -ﬁ
. equations (2-4) and (2-6). ;‘
2T The parameters can be identified by using the least-square f
. :5 identification criterion. Since most observed data include a
¥ certain percentage of noise, the frequency domain approach will
hx be used to perform the parameter identification.
It is anticipated that as the order, M, of the model in
E: Equation 2-2 is increased, the response of a hysteretic system
> can be matched with increasing accuracy. However, for practical
reasons involving estimation accuracy for system parameters, very "
high order linear system models cannot be used to simulate f
hysteretic system behavior. A :
] = . Before considering the problem of parameter estimation for
f- o the system of Equation 2-2, note that we anticipate calculating a \
- set of parameters with values in a specific range. For example,
. when M = 0 and Equation 2-4 is the model for system response, we
l! anticipate finding values 1/co > 0 and ci/co > 0 (i.e., co0 > 0 )
) and c1 > 0. These values guarantee that the model has positive .
%; stiffness and damping, as we know the real system must. When i
M =1 and Equation 2-5 models the system response, we anticipate v
finding values co > 0, c1 > 0, and c2 > 0. These values guaran-
~ tee that the model response will be stable.
ES The energy dissipted by the systems described in this sec- ¥

tion can be computed using Equation 2-1 or 2-2. In the terms of

Equation 2-1, the energy dissipated by a system is

, z(T)

& Ep = u dz (2-7)
z(0)

where z(0) is the system displacement at time 0, z(T) is the
i system displacement at time T, and T is the time through which

the energy computation is executed. This formula provides the

area enclosed in the hysteresis loops generated by the system




e N N T T AT TR TR —
. P A A 2 S S - R L R

~

response. For example, Equation 2-7 could be used to compute the
area enclosed by the hysteresis loop of Figure 2-1. This equa-
tion can be transformed into terms more convenient for computa-
tion. Note that the integral of Equation 2-7 is written in terms
of the displacement variable z. The variable of integration can
be transformed to a time variable yielding the following
expression.

T

Ep = / uZdt (2-7a)

0
Finally, Equation 2-1 can be used to obtain

T
Ep = / (f - mz) 2z dt (2-7b)
0

When the input and response for an SDF system are measured,
Equation 2-7b can be used to directly compute the energy dissi-
pated by a system. When the response is computed, for example by
solving Equations 2-5, then the input and system parameters are
used to find z and its derivatives. The input, f, and computed
response, 2z, are used in Equation 2-7b to determine the energy
dissipated.

Numerical examples where we compute the parameters of linear
systems equivalent to bilinear, hysteretic systems are presented
in Chapter 8. In these examples, the energy dissipated by each
system is computed and the results are compared.
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o CHAPTER 3 i
Il IDENTIFICATION OF PARAMETERS IN THE TIME DOMAIN -
-4 3.0 Time Domain Approach ‘
?: The time domain parameter identification procedure is used
- to introduce the identification procedures for the models
NG described in Chapter 2. Though time domain approach is not used
extensively in this investigation, the method can still be effec-
ii tive under certain circumstances. Particularly, the time domain
= identification process is useful when the measured input and
;N response contain little or no noise.
) Measured input and response data from a structural system
: ig are used to estimate the system parameters. The measured input

data can be a base acceleration, force or a pressure function.

In the following, the measured response data are assumed to be

given as acceleration values. This assumption is realistic since
. structure response acceleration is often measured during an

Il experiment or test by accelerometers installed in the structure.

B 3.1 Formulation
: _ i (3)
Consider Equation 2-3 and let zy, 2y, and z, , 2=0,...,n-1,
' !! be the response displacement, velocity, and jth derivatives of

the displacement at time, t, = 28t, = 0,...,n-1. Let f, and

fﬁj), £ =0,...,n-1, be the force at time ty, £=0,...n-1 and
ijts jth derivative. Then Equation 2-3 can be written at time
2 ty to obtain

°M+1 d S5 ( (3) (j+2)
& —_2, + z o -fz + mzz ) = fl -
j=1

£=0,...,n-1 (3-1)

The reason for normalizing with respect to co is that cg should
never be 0 for the system under consideration.
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The notation in this equation can be simplified by taking

3 1 cml 8C =
L +c_o’aj+1 E%’j 1...,M (3-2)

Equation 3-1 can be written as

M
aozz + alil + z aj+1 (_ fl(j) + mzﬁ(j“Z)): fl - m?z .
J=1

£=0,...,n-1 (3-3)
The notation in this equation can be simplified by defining
ool = [t (- v i) oo (1,0 4 med)]
£=0,...,n-1 (3-4)
{a} = (20 a1 az...2)" (3-5)

where the T superscript refers to matrix transposition. Using
these expressions in Equation 3-3 yields the relation

}zz; H =f, -mf, £=0,...,n1 (3-6)

This is the equation governing the linear system response at
time t,.

The notation can be further simplified by defining

= {20} r fo-mZo
{2} f1 - m¥)
1= | . | {fz} U B | e
| Zp.1- L'fn-l - min-l
o

Clhibes hvien Meve SU Aed
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,- Using this expression, the sequence of Equation 3-6, for

‘. . 1 = 0,-‘.,n'1, can be Witten

s |« ff | )

3 [zf] fa‘ It | (3-8)
. This equation governs the linear system response at all times.

o~ " When (1) the system from which the data were measured is truly
N linear, (2) there is no noise in the measured data, and (3) the
'\ “ derivatives and integrals of fg and 23, £ = 0,...,n-1, are

SN known exactly, Equation 3-8 can be satisfied exactly by the
SRR measured data and a set of coefficients. In general, these

‘ - conditions cannot be satisfied exactly, therefore, an error term
5)’{' . should be included in Equation 3-8. Define the error vector as
N '

- ‘ T

:5: 'C: = (80 €] . e e En_l)

:-‘ -’ = ‘ l - ‘ l -
S 1Zef |2 ( Fz| (3-9)
L .

. The element e€g, %=0,...n-1, designates the error term at

- time tg. This error quantifies the data nonlinearity, the
measurement noise, and the inaccuracy of the derivatives and
= integrals of Z, and fy. In Equation 3-9 [Z¢| and {f,} will be

K treated as known quantities which can be measured during an

™, -7
e experiment. The error vector in Equation 3-9 thus becomes a func-
2 tion of the system parameters, {al.

W The next step is to identify the parameters of the system
RO model. A least squares approach is adopted in this

,-L:j ot investigation.
e,
:_‘: o An overall measure of the mismatch between the measured data
Pl - )

- - and the model in Equation 3-8 is established as follows.
- 2 T cr o el 997 T\(r
= e = (e} {e) ({a} [z)" - )([Zf]{a} - {fz})
¥
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This is referred to as the squared error between the measured
data and the system model. This error can be minimized through
the proper choice of the parameter vector {a}. This can be done
by letting

2 2 2
T FT3 o€
—.2.808.__2,8...8—7__’ (3-11)
Sao %21 aaM+1

and solving this sequence of equations for the ajs j=0,...M+1,
This solution can be executed and the result, in vector form, is

{a} = ([zf]T [z ])‘1 [zf]T i} (3-12)

The parameter vector chosen above is the best estimate of
the system parameters in a least squares sense. If the quantity,
e2/n (where e is computed using Equations 3-9 and 3-10), is
relatively small, then Equation 3-3 accurately represents the
measured system. if this is not true, then the model of Equation
3-3 is inadequate.

The €2 will be equal to zero if the measured data are
noise free, the system is linear, and the computed derivatives
and integrals of the measured data are exact. Failure to meet
one or more of these requirements will cause €2 to be nonzero.
In practice, the parameter identification procedure outlined
above can only be used effectively when there is little or no
noise in the measurements. The method is particularly effective
when the parameter M is set to O because this model will not, in
general, require the computation of derfvatives of ¥ and f. How-
ever, when noise is present and M = 1, the procedure loses its
accuracy. If the measured raw data, 2y and fg, 2=0,...n-1,
are used to obtain the derivatives through numerical differentia-
tion, then the estimated values of "2"and f may be very poor due
to amplification of the effects of noise.
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In view of this, alternate procedures for parameter identi-
|| fication in the presence of noise must be established. The
A following chapters develop a frequency domain approach to the

identification of system parameters.
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CHAPTER 4
IDENTIFICATION OF PARAMETERS IN FREQUENCY DOMAIN

4.0 ldentification of Parameters
The problem of parameter identification can be posed as one
class in the broader topic of optimization. The object of param-

eter identification is to make inferences about the real world
and mathematical models on the basis of measured input data. The
measured data in this study were assumed available, and were
simulated to represent the field data.

First, it is assumed that there is no noise present in the
measured data. Then, noise data are introduced. Note that the
measured response data are given as acceleration values. This is
realistic since the structural response acceleration is often the
measured quantity in an experimental test.

4.1 Second Order System
Now, consider the second-order model, Equation 2-4, Equa-
tion 2-4 can be simpliified by taking

1

- !
To =0, a=gr (4-1)

c
Co
The equation governing motion of the system becomes
mz + ajz + apz = f (4-2)
Fourier transform both sides to obtain

m(1w)2Z(w) + a1(iw)Z(w) + agZ(w) = F(w) (4-3)°

where

.- W
5 IR
.....
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'. . Z(w) =/ z(t) et gt ecuce
F(w) =f fit) et gt wcuce (4-4)
"
IR are the Fourier transforms of z(t) and f(t), respectively. This
& equation can be rearranged and combined with Z(w) and F(w) terms
o on one side of the equation to obtain i
::: :::: (-mm2 + ag + ajiw) =; (4-5)
N Multiply each side of the equation by its complex conjugate to
4 & obtain the modulus squared.
5 2 2
- mu? + ap + a1 iw| = -lf-l-z (4-6)
.. . |Z]
iz Evaluate the left side and let |F]2/’Z|2 equal Q(w) to obtain
2
.'._ ’.J, 2 2 2
- (ag - mw”) + (a1w)” = Q(w) (4-7)

N
o This equation can be used to identify the parameters of second-
'f; " order linear system. However, this equation is exactly satisfied
- if and only if: 1) the system under consideration is linear; 2)
. all measurements are noise free; and, 3) the Fourier transforms
S of Z(t) and f(t) used in Equation (4-7) are exact. When these
f ) requirements are not satisfied, Equation (4-7) will include an
- :.. error term (or noise term). This practical case is usually the
. one that needs the most attention. '
When noise is present on the measured input and response, N
S Equation (4-7) can be written as
.n. o -:J
I 2 2 2 4
5 (ap - mu®) + (ajw)® = Q(w) + &(w) (4-8)
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Note from Equation 4-2 that ap is the equivalent stiffness and
a) is the equivalent damping for the second-order linear system.
Therefore, ap is greater in magnitude than ai. In view of this
and the form of Equation 4-8, ap can be estimated by noting the
frequency where Q(w) + €(w) is a minimum whenever the equivalent
damping factor is much less than 1 (say less than 0.2). This
will be true in most civil engineering systems.

Denote the frequency where Q(w) + €(w) is a minimum by
wy. Equation 4-8 shows that, approximately,

ap = mmmz (4-9)

since the first term on the left is approximately zero when
Q(w) + e(w) is a minimum. Substitute Equation 4-9 into Equation
4-8; this yields

m2(u 2 - w?) + (210)% = Q(u) + €(w) (4-10)

Now, it is necessary to find the coefficient a; which minimizes
the e(w).

The coefficients a1 can be evaluated using a least-squares
approach, where the integral of ez(w) over a specific range of
frequencies is minimized. Based on Equation 4-10, set

mb 2 )

[ (a12w2 ol < of) - q) dos o) (1)
W

a

where w, and wy are lower and upper bound frequencies,
respectively. This frequency band is chosen so that the system
response behavior can be fully characterized. It is anticipated
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that the frequency band includes the natural frequency for a
ll linear or slightly non-linear system. For a highly nonlinear
s system, the characteristic frequency, wy, will shift. However,
. \: the frequency band can be located by finding the frequency where
b Q(w) + €(w) is a minimum, and selecting the frequency band around
} - this frequency.

zi g In general, the lower frequency, w,, is located at a point
- where its corresponding Q(uwa) + €(w,) value is about 5 times
as great as the minimum value of Q(w) + e(w); and w, is the
2 higher frequency where Q(wp) + e(wp) is about 5 times greater
:f i; than the minimum value of Q(w) + €¢(w). This method is used to
~§I select w, and w, based on an approximate linear analysis.
is When w, and w, are chosen in this manner, the interval (u,,
wp) will be approximately the half power bandwidth of the sys-
4 Si tem. This frequency interval reflects the characteristics of the
EZ ; system.
li Take the first partial derivative of €2 with respect to
) 212, and set it equal to 0. The result is

2 Fb 2 2
aiz = ZJ (a12w2 + ml (wmz - mz) - Q(m))w dw = 0 (4-12)

a

Simplify this to obtain

w W
5 a b 2
i a2 f ot du = f (Q(w) -l (02 - of) ) o du (4-122)
By w, m .

Integrate the equation where possible to get




b 4
5 ./. 2 2 |w 3 3
a, = w w) dw - m m (v -w
| B s 0(w) [ (wy” - w.°)
b a w
: a
s ~Eu(wd-ed) e LT wj)] (4-13)
v ;? Let wy = Q5 up
“ Wy = G Wy (4-14)
where q, is a coefficient less than one and qy is a
) coefficient greater than one. This equation can be further
X simplified
= . w 2 wb
L . [ % o) do + o[- 3 (a,° - 0,
% - % (“n w
a
i _ +2(q° - a,°) -3 (g - ) (4-15)

This equation provides the value of a,. This is the best esti-
_ mator in the least-squares sense. All the parameters in this

| equation are known except the integral of the wZQ(w) term which
can be evaluated numerically.

{* 2 4.2 Third Order Equation

G The second-order linear ordinary differential equation may
- not be considered an accurate representation of the hysteretic
- system. It is hoped that the third-order linear system may
- improve the accuracy in some sense.

= Equation 2-6 can be simplified by taking

‘. ,. "1_'

1 C2 Ci

Eb—= a0, — = 3], =— = Q2 (4-16)

Saa, -, PP ST DU _.,J
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Then Equation 2-6 becomes

. .
-
e 98|

may 2 + m¥ + a1f + agz = f + aof (4-17)

Fourier transform both sides to get
- s

(mez (0)® + m(i0)? + 2y (10) + ao) _F ]

o T+ 3 (7o) | (4-18) |
< ( E
The symbols used in this equation have the same meaning as in .i

earlier equations. Multiply each side of the equation by its -
complex conjugate to yield the modulus squared :

L & ‘ )
. . 3 2 . .
- imaze” - m” + fajw + ag| F(2
: i = i—LZ (4-19)
1+dazw ||
ll Evaluate the left hand side and let IFL;/1Z’2 be replaced by

Q(w) to obtain

(ag - mwz) + wl (a1 - mw2a2)2

» = Q (w) (4-20)
1+ (azw)

This equation governs a third-order linear system in the fre-
quency domain. Measured data can satisfy this equation exactly
if and only if: 1) the system under consideration is linear; 2)
all measurements are noise free; and, 3) the Fourier transforms
E; used to define Q(w) are exact. These conditions, however, are
not usually met. In fact, the purpose of this investigation is
to use the higher-order linear system to represent an hysteretic
system. Therefore, measured data do not usually satisfy the

..............................
--------------------------
...........
..........
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Eﬁi B above equation. To account for this explicitly, Equation 4-20 is
(‘ . written

.‘:: k 2 2 v
TR (ap - m‘*’z) + “’2(31 - m“’232)
B = Q(w) + €{w) (4-21)

1+ (agw)?

Regcd 4 A& 4 7 o°

o~ e(w) is a noise term which must be minimized by the proper choice

{ of system parameters. This equation can be used to identify the

system parameters following several approaches. Two of these are

'y summarized below. One anproach approximates certain terms in

N Equation 4-20 to obtain estimates for the system parameters,

< while the other approach uses a search technique to estimate

"‘ Es system parameters. \

*
I3 ‘x‘A'f ’

The first method to be investigated is an approximate tech-
nique. When az is small compared to the characteristic fre-
quency, wy of an SDF system, the (azw)2 term in the denomi-

'i ‘ nator can be neglected. This is usually true when nonlinear
- deformation is mhot too large. Eliminate the (azw)z term in
S Equation 4-21 to obtain

2 2
= (a0 - m?)" + 0? (a1 - maag)” = Qo) + e(u) (4-22)

When a; and a2 are small compared to ag (which is usually the K
case, the minimum of the left-hand side occurs near the frequency .

—' w = ‘/.a_:l (4-23)

S As previously described, the characteristic frequency, wpy, can
s be found when the Q(w) + €(w) term is a minimum. In terms of
wy, ap can be written

ag = mwmz (4-24)

i
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Expand the second term on the left side of Equation 4-22 and use

the result of Equation 4-24. Neglect the m2w4a22 term. Then

Equation 4-22 becomes

2
2 (me - wkz) + wz (alz - mezalaz) = Q(m) + C(w) (4'25)

Let a12 = b; and ajaz = bz, then (4-26)

2
w? (b1 - 2mh) -,<Q(w) - nf(a ? - of) )= e(w)  (4-27)

When this expression is evaluated at the discrete frequency

w = w, the result is

2
w2 (b - 2mu, 2b,,) - (Qk - n(w? - u?) ) =¢  (4-28)

The system parameters, a3 and a2, can now be identified as
those which minimize the sum of the squares of the g terms in
Equation 4-28. Consider a sequence of discrete frequencies
uniformly spaced in the interval (wa, wb). These are w
wy + bw, wy + 28w, etc. Define

a’

{b} = (b1 bz)T (4-29a)
“a - e,
wo + M - 2m(ma + Aw)4
[x1] = |w, + 200 - 2m(u, + 200)% (4-29b)
4
| “b - ama,

............



2
Qwa - m2<(wm2 - ma2)>
2 \w 2 - (w +Am)2>2
Qwa+Aw m m a
{XZ} =
2
Q + 20w - m2 wmz - (a»a + ZM)Z)
2
wa o (umz ) wbz)
{e} = (ewa ema+Am....ewb) (4-29d)

Note Aw is equal to (2v/T) and T is the total duration of the
excitation. (wa, wb) defines the range of frequencies over which
the system is analyzed. As in the identification of parameters
of the second-order linear system, only a portion of the fre-
quency range is used in the parameter identification.

This frequency range can be chosen as before. In terms of
the matrices defined above, Equation 4-27 can be written at
discrete frequencies as

[x,1 {b} = {x,} = {e} (4-30)
The vector {b} can be found by minimizing the sum of the squares

of {e}. This is € = {e}T {e}. The vector {b} which mini-
mizes €2 is

b} = ([x,17x, 172 x,07 {x,) (4-31)

When b; and b2 have been computed, a; and a2 can be found from
Equation 4-26.

a1 = /b1, az = bz/a) (4-32)
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This solution provides approximate values for the parameters in
the third-order linear system which represents the hysteretic
system.

Another approach can be used for the estimation of param-
eters in the higher order linear system. This is a search pro-
cedure which iteratively estimates the parameter values. Equa-
tion 4-2]1 can be rewritten

2 2
(ag-mw ) + o (a3 - mw ay)

(4-33)
1+ (am)°

e(w) = Qu) -

This quantity is a measure of the mismatch between the measured
data, reflected in Q(w), and the model, reflected in the second
term on the right side of Equation 4-33.

This mismatch can be either positive or negative and can be
used to define one measure of the difference between the model
and the measured data over a range of frequencies. This measure
is

e E e(w,) (4-34)

where the sum is taken over those discrete frequencies in the
interval (w,, wy). This is the square error of the model.

This error is minimized, however, when the model parameters are
chosen to satisfy the sequence of equations

2 2 2
3¢ _ 9e~ _ 3¢
T I L Tek 71 ' (4-35)

The parameters agp, a1, and a2, which satisfy these equations
establish a model which is optimal in a least squares sense.

Equations 4-35 can be solved numerically using a search
technique. A computer program was written to solve Equation




4-35. The program, included in the appendix, uses Newton's meth-
od to search for the solution. The analysis procedure followed
in the computer program is identical to that used in solution of
the problem summarized in the following section. The steps in
the solution procedure are listed at the end of Chapter 5.

ot N e ety Tt . .
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CHAPTER 5 1

fﬂ - SYSTEM WITH TIME-VARYING PARAMETERS

5.0 Time-Varying Parameters Model ‘
- Sructures may exhibit time-variant nonlinear response to \

strong motion excitation. Time-varying structural properties
were not considered in the previous chapters. In this chapter, a
structure is modeled as a time variant single-degree-of-freedom

] (SDF) oscillator, and a methodology is introduced to determine '
o Z&? its parameters using the observed data. It is important to .
N introduce a technique which can be applied when noise is present :
in the measured data.

To demonstrate this procedure, consider an SDF linear system
?2 with mass m. Let the damping and stiffness parameters for this
) system be time varying. Its equation of motion fis
- mZ+ C(t)z +K(t)z=Ff (5-1)
:E in which z is the displacement response of the system; C(t) and .
K(t) are time variant damping and stiffness functions of the sys- .
; !! tem, respectively; and f is the forcing function. It is proposed
- that this equation be used to model the behavior of a system
~ governed by Equation 2-1. Observe the system from time O to T
- and assume that z(0) = 0 and z(0) = O.
i{ The functions (C(t) and K(t) are assumed to have the form
- C(t) = (1 +at) co .
s A .
K(t) = (1 + Bt) ko (5-2) :
E; N Here, co and ko are the damping constant and the stiffness con-
§ o stant, respectively. o and B are constant coefficients which are ,
L L usually much less than one. s
A :
Lo
‘.
.t
vy
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_ In many practical cases, it is observed that the structure

I' displays an increase in damping and a decrease in stiffness when
) the structure excites an inelastic response. This implies o is a
positive constant and 8 is a negative constant.

In this study, although « and B will be considered as small
g values, they will be large enough to influence the system's prop-
' érties. This permits treatment of Equation 5-1 as a perturbed

< differential equation. When o and B8 are both equal to 0 (unper-
= turbed), the equation 5-1 is simply a second-order differential
5? - equation with constant coefficients which can be easily solved.
'is > The solution of Equation 5-1 can be written in the form (for
: - example reference 82)
-]
: z=20+0a2, + B zy + high-order terms (5-3)
T Since o and B are small, the high-order terms will be neglected.
' I' Substituting Equation 5-3 into 5-1 and expanding yields
. m(Zo + aZ + BZy) + co (1 + at) (2o + az + Bis)
; o + ko (1 + Bt) (zo + az  + BzB) = f (5-4)
K
. Moving the force term to the left side of the equation, grouping
- coefficients of the terms, 1, a«, and B, then equating the coeffi-
=2 cients to zero results in
- mZo + coZo + kozo = f (5-5a)
- mi, + coz, + koz, = - cotzo (5-5b)
u o0 .
mZB + cozB + kozg = - kotzo (5-5¢)
R

These equations approximately govern the system's response when
time variation of the parameters is linear, as shown in Equation

......................
.................................
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:‘.lj 5-2. If the excitation and the system's response are known, then
" . these equations can be used with a time domain parameter
~.; identification procedure to estimate the system parameters.
&Y
Tj: However, when a time-domain parameter identification approach is
5' f‘:f‘, used, problems arise if noise is present in the measured input

- and response signals (see Reference 8).

:."'l; - A frequency domain approach to the identification of system.
¥ \ . 3 -

R parameters is pursued. Therefore, the equations of motion are
[ transformed to the frequency domain.

" .':
\' i . jwt

%o Zo(w) =f zo(t) e dt (5-6a)
-] -®
> it '
- Z,(w) =[ z,(t) e dt (5-6b)
f\:f 73 -
.:-’: ® fot

o _ -iw -

. Zy(w) -__[; z4(t) e dt (5-6¢)

B
,. :;:: define the Fourier transforms of zp(t), zo(t), and zg(t).

o And Tet

[
S 20(t) = 5t [ Zo(0) &'** du (5-7a)
SR 2 (t) = 1 f Y4 (m) eiwt dw (5-7b)
i o) 7w [ %
o .
o 1 jut
i.\ ZB(t) = ﬁLZB(m) e’ duw (5-7¢)
"u ;:n‘:
o
TRE
K
v
d

PO SR




define the inverse Fourier transforms. Then the Fourier trans-
form of Equation 5-3 is

Z(w) = Zp + aZ + BZB (5-8)

It can be shown that the Fourier transform of Equations 5-5a
through 5-5¢ are given by

-m?Zg(w) + co iuZo(w) + ko Zo(w) = F(w) (5-9a)

-m?Z(0) + co iuZy(w) + koZ,(w) w@um+wraml
-9b)

(
-1 ko Z'o(w) (5-9¢)

-mwzzs(w) + co iwZg(w) + koZg(w)

Now solve the Equations 5-9 simultaneously. The result is

Zo() = H(u) F(u) (5-10a)
QW)=mmm(MMHM+NEWMHM+HMWW“»<&NM
Zg(w) = -ikoH(w) (H'F(w) + H(w) F'(w» o " (5-10c)

where H(w) is frequency response function and H'(w) is its first
derivative. These can be written in the forms

-1
H(w) = [(ko - m?) + i(wcq)] (5-11a)

-2
H'(w) = (2me - dco) [(ko - mw?) + i(uco)] (5-11b)

F(w) is the Fourier transform of f(t) and F'(w) is its
derivative.

Flw) = f () et at (5-12a)




D 35
. i [
:Ei ’
< F'(w) = -if tF(t) e 19t 4t (5-12b) :
S B Jo
Substitute the results from Equations 5-10 into Equation ]
5-8. This yields ]
m
2(s) = HO)F(s) + acolH(u) H(WIF(w) + u(H' (w)F (o) 4
1
‘ + H(w)F* (0))+ (~ikoB) H(w)(H'(w)F(w) + H(@)F'(w))  (5-13) |
- This is the approximate frequency domain expression for the solu- ‘
P tion of Equation 5-1. It is considered accurate when both a and |
§:§ N B are small. The displacement response also can be obtained by 1
]
SO inverse Fourier transformation of the Equation 5-13. Equation A
fl =] 5-13 is used in the identification process. Its use will finally !
:ij . lead to the estimation of the parameters from a sequence of mea-
NN sured data. ]
l;; 5.1 Identification Procedure :

.i The method described above provides the solution for the !
Equation 5-1 in the frequency domain. When the measured values
of f(t) are used to estimate F(w) and the result is used in Equa-
tion 5-13 to obtain Z(w), this Z(w) will not, in general, match
the Z(w) estimated from the measured Z(t). Moreover, the
calculated |Z(w)| will not match the|Z(w)| obtained from measure-
ment. The reasons for this mismatch are that (1) noise is inevi-
tably present in the measu:ed input and response. (2) the mathe-
matical model is linear, yet the measured data come from non-
linear structures and (3) the discrete Fourier transform of a

R «
i decdussivcinai

!
1
o Bokecdecloiond

N time series is used to represent the continuous Fourier trans-
:i i form. In the following, a brief theoretical background is pre-
s sented together with the simple description of the procedure for !
- finding the unknown parameters.

]
PPN Y ]
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An equation defining the mismatch between the measured data

(; Il and the model of Equation 5-1 can be established. Let
§;§ N IZ(m)(w)| be the modulus of the Fourier transform of the
ifé . measured structural response data. Let |Z(w)| be the modulus of
ROTR the function obtained when the Fourier transform of the measured
‘{ - input data is used in Equation 5-13. The difference between
fzf S these function is defined
e(w) = [z(w)] - |z(w){™)] (5-14)
When the discrete Fourier transform is used to approximate
the continuous Fourier transform of a measured or theoretical
EONEE signal, it is defined at a discrete set of frequencies,
%i{‘ Ej we = kdw, k = 0,1,...,n-1. Here n and Aw relate to the time
ifj . signal z(t) and its discretization. It is assumed that z(t) is
-l; 2 available on the interval (0, T) and is represented by the
'SEE . discrete set of values zj, j=0,.../n-1. Thus, n is the number
|| of points where the signal is represented. Aw is given by 2%/T.
RO At a particular frequency w = wy, Equation 5-14 becomes
"N
< k= (2, ()] - |2, ()] (5-15)
'L
i;; €x can be positive or negative. A quantity which is
if - always non-negative and which summarizes the differences between
= the measured, |Z£m) |, and the theoretical, 'Zk" structural
fﬁ responses in the frequency domain over a range of frequencies is
' given by
‘L N e2 =§ ekz ‘ (5-16)
iﬂf - This is the square error between measured data and the
}g - model. This error can be minimized by properly choosing the
IRt parameters, ko, co, @, and B. A method that chooses the
fﬁ; .. parameters this way is a least squares method.
SO
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The range of index values, k, over which the above sum is
II taken, is not specified in Equation 5-16. Equation 5-16 need not
be summed from O to n. Rather, the summation should be carried
out over the range of frequencies which includes those values of
Iy containing significant information on the behavior of the

‘l ’. "- ’4 'I l‘l ‘,l

system. In general, this is the band of frequencies surrounding
RN the characteristic frequency of the system.

o ] Now, one can choose kg, Cgp, &, and B, as those constants
N which satisfy

2 2 2 2
9e” _ 9e~ _ 9e° _ 9e” _
5k; ~dcg “da -3 -0 (5-17)

;5 The ko, co, @, and B, can be located using a search technique.
To simplify the analysis, Newton's method is used to minimize
€2 with respect to ko, co, @, and B.

Newton's method converges very rapidly once an iterate is

ll fairly close to the solution. The formal simplicity and its
iﬁ? . great speed are the reasons why Newton's method is used in this
o study.

To assure convergence in the numerical analysis, it is
important to choose the initial iterate properly. A more
. detailed discussion of the numerical procedures will be presented
R later, in the numerical examples.

The steps in the numerical analysis are as follows:

1. Make the initial guesses at the parameter values, ko,
Co, @, and B.

o 2. Choose the computation increments &ko, Acp, 8a, and 4B.

- : 3. Choose the desired accuracy measure (used to judge
e convergence).

i WY e PP G SO | P S Y
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: 1
b 4. Compute the partial first and second derivatives of €2 ;E
. with respect to ko using central difference formulas. -4
‘! !l 5. Use Newton's method to minimize €2 with respect to
E:? ko.
'? :; 6. Repeat steps 4 and 5, this time minimizing with respect
i to co, then «, then B.
o)
L 7. Check the result to convergence.
E; a. If convergence has occurred, then stop the
S analysis.

b. If convergence has not occurred, then repeat steps 4

through 6.
- A computer program to execute the procedure described above .
ts has been written. This program is named PUR and a listing is ii
included in the Appendix. o

|
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CHAPTER 6 T
IDENTIFICATION OF MULTI-DEGREE-OF-FREEDOM SYSTEM Y

6.0 M.D.F. System Model

The restoring force model developed in the Equation 2-2 of
Chapter 2 can be extended for use in the modeling of a multi- ‘0
degree-of -freedom (MDF) system. In the present investigation a
shear beam type MDF structure will be considered. Figure 6-1
shows the type of structure under investigation. In this system

the mass, mj, is connected to masses mJ._1 and mj+1 by the
elements denoted kj and kj+1. -
The equation of motion governing the response of a linear K

mass excited undamped MDF system is
[(m] {Z} + [k] {2} = {f} (6-1)

where m and k are the mass and stiffness matrices, respectively,
and are written in the form

................
.......................
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n is the number of degrees of freedom of the MDF system in

in Figure 6-1. The restoring force in this expression is [k] {z}
and this expression is valid as long as the response remains
linear. When the response is inelastic then [k] {z} must be
replaced by a vector reflecting the time dependent characteristic
of the restoring force.

In the present application it will be convenient to rewrite
the equation of motion in terms of relative displacements. Let
¥j» j=2,...n, denote the relative displacement between the
j-1th and jth masses, and let y; denote the relative displace-
ment between mass, mj, and the ground. Then the relation can

“be written

{z} = [A] {y} (6-2)
where
(100 + + + 0] -
110 0
111 0
[A] = . . O . . (6_3)

L L L ] L L J

111« « <1

B il

Equation 6-2 provides an expression for {z}, and this result can
be used in Equation 6-1 to obtain an alternate expression for the
equation of motion. This is

[M] (7} + [K] {y} = {f} (6-4)

o




where
mp 0 0« - -0
m, m, 0 « +» « 0
m3 m3 my .
M =[m (A=} - - = . (6-4a)
a My Mmoo« - m. _J
rkl -k2 0 . . . 0
0 k2 -k3 0
(K} =[kJ[A) =] « =« « . (6-4b)
[ ] L ) » * L] . -kn
LO 0 0 +« « kﬂJ

The term [k] {y} in Equation 6-4 can be expanded to obtain the

expression
r a
kyyy - &
ko¥p = kay3
k3¥3 = kg¥y
K] {y} = . (6-5)

Note that the restoring force applied to mass J is kjyj-kj+1yj+1.
The objective in this investigation is to replace the simple

.-

--------------------------------
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A, linear restoring force with a high order linear model. Therefore
(: I' in Equation 6-5 each of the terms kjyj will be replaced with a
jfg B term Uyge Each term uj is governed by a differential equation.
DS Let [U] and {R} be defined as follows

, ! ul "U2 0 * ¢ d 0

2 U -u3

-:E . 0 0 U3 -lg
b - =4+ . . (6-6)
. \ ] L] . -un

.:\ ~ __0 0 . . . . un.d

23 (1]

‘ = ]
i 1

' {R} = . ) (6-7)

5 '

h:j - .
NN

LD
- 1

i K .
e Then the differential equation governing the motion becomes

o [M] {¥} + [U] R} = {f} (6-8)
oo "
. Each uy, i=1,...n, is governed by an equation of the form
S

) M )

S i) . . )

E €454 S5 me1Yi?Ys (6-9)
= =
2 3=0
%ﬁ' where Cijs i=l,...n, j=0,...,M+1, are the parameters which
{f - characterize the restoring force. The superscript (j) refers to
d 5 the jth derivative of uj with respect to time. This equation
o is analogous to Equation 2-2 for the SDF system.
.éjj?

8
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o Equation 6-9 can be written in matrix form using the

]

" B following expression. Let

- g A At
- l‘l‘- 'Y

0

+

Ay

‘
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fl
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Q .
g .

s

o
-
-
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-, >~
< .
D
Fadt
LR
v
1“

-1 4 4 0 e 2.

PR -

4
L
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xJ
«*
+*
Ll
{

8 ' .
¢ 0 0 . 0
0 ¢p5 0 0
[c;l = 0 0 ¢35 0 | j=0,...,M+1
-? 0 0 . . . Cni

Then the sequénce of Equation 6-9 can be expressed

M
Z [cj] {u(J)} = [°M+1] {y} + {y}
j=0

where {ulJ)} is the jth derivative of the vector

f

U W
Y2
uw=1"Y3 L

1.

u
"

(6-10)

(6-11)

(6-12)

To obtain the differential equation approximately governing
the motion of an MDF system, it is necessary to combine Equation

6-8 and 6-11. Rearrange Equation 6-8 to obtain

(U] R} = {f} - [M] {y}

(6-13)

I |
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Let
1 1 1 . . . 7]
0 1 1
0 0 1 .
{D} = . d . (6-14)
0 0 O . . . 1J

Premultiply both sides of Equation 6-16 by [D]; the result is

[0] [U] R} = [D] [{f} - [M] {y}] (6-15)

But the left side of Equation 6-15 is simply equal to {u}.
Therefore

{u} = [D] [{f} - [M] {y}] (6-16)

and the jth derivative of {ul} is

}u‘“: = [0] [{f‘” { [M] {y‘j*z’ﬂ (6-17)

This expression can be used in Equation 6-11 to obtain

M
ECD{f}-M{ H = [Cy,,] (¥} + {y)
‘j=0[ j][][ (M1 {y [Cyepd ty} + Y18)

Upon rearrangement this expression becomes

M
20c, 001 1 62 ) [ey )1 G + iy
3=0

M
= D I3 0] 30y (6-19)
30

T N L T T T s e
RSO R .-

RIS

') . .
a'a'e’s 4




130

e

.......................

........
o 0 e %

P LA AT TR T TR W e ey Lail ol i AT S M 20 i S B e B e 4
ESE S LT P

This is the equation assumed to govern motion of the inelastic
MDF system. The element restoring forces of the MDF system are
governed by Equation 6-9. The governing equation for the MDF
system is analogous to Equation 2-4, the governing equation for
the SDF system.

When the parameters appearing in Equation 6-19 are known and
the input is specified, the equation of motion can be solved and
its solution provides the structural response approximation.
Several measurements of structural responses can be evaluated.
For example, the response displacement, velocity and acceleration
at all structural degrees of freedom can be formed. Beyond this,
other measures of structure response, such as energy dissipated
by the structure, can be determined. Later, numerical examples
of structural response computation will be given.

The objective of this investigation is to perform structural
parameter identification for inelastic structures. Equation 6-19
could be used to execute such an identification, using measured
data, but the presence of the higher derivatives of both input
and response precludes the practical applicétion of this
approach. (See Reference 8). A better approach to the parameter
identification problem is in the frequency domain. Therefore,
Equation 6-19 is transformed. Fourier transformation of both
sides of Equation 6-19 yields the expression

M

206,71 (0] [M] (10)3*2) + (1w)Cyyy T + (11| 13

§=0
M .
z[cj][o] (fw)d | (F} (6-20)
§=0

.......
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.:
where
- . {Y(w)} =f {y(t)} e utgt (6-20a)
. . )
:":- \: L .
e {(Fw)} =f {f(t)} &% at (6-20b)
, - 00
To use this equation for parameter identification, the
following notation is established. Let
- . . j+2 . -1
3 [H@)] = <Jz=:0[cj1 (0] (M) (i) >+ (10) [Cyyyd + [1]
M .
j B x | 206,107 (iwd (6-21)
=0
¥ ‘ The components in [H(w)] can be denoted
h". P -
::.' Hu(‘”) le(“’) * s Hln(“’)
3 Hpp (@) Hap(w) Hon(®)
o H w = ° . 6‘22
R [H(w)] . . ( )
- .:" -Hnl(w) an(m) o o o Hnn(w’)J
- Then Equation 6-23 can be expressed as
: {Y} = |H|{F) (6-23)
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The jth term in the vector {Y} is
n
Vi(w) = 20 Hs (0)F (u) (6-24)
k=1

This is the Fourier Transform of the structure response at the
jth degree of freedom of the structure. The modulus of the
response at this degree of freedom is

n
Y5 ()] = |Z iy (8) F(@)]s 31,00, (6-25)
k=1

6.1 Identification Procedure

Equation 6-25 can be used to execute the identification of
the structural model parameters. If the structural system under
consideration is linear with governing equation given by Equation
6-19, and if its input and response can be measured exactly,
without noise, and if the Fourier Transform of these signals is

performed exactly, then measured data can satisfy Equation 6-25.
But, in general, measured data are noisy. The Fourier Transform
used in practical computation is the Fast Fourier Transform
(FFT). And the model of Equation 6-19 does not precisely charac-
terize the structural system. Therefore, Equation 6-25 will not
generally be exactly satisfied where Yj(w) and F (w) are

obtained using measured data. In view of this the following
expression can be written

n
ej(w) =le(w)| - 'é ij(w)Fk(w)l (6-26)
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This is an error term and it characterizes the differences
between the measured response data, and the response that would
be predicted Ly the model, Equation 6-20.

A least squares approach can be used to minimize this

error. Let
LY,
el - / €5 (w)do (6-27)
[V]
a

define the squared error of the model in the frequency domain at
degree of freedom j. The integration is taken over a range of
frequency values such as wy through w,. These limits are
usually chosen to include the frequencies where the system dis-
plays power,

A measure of the model error at all degrees of freedom is

obtained by summing the eg at all points.

n
el =Z €§ (6-28)

=1

This quantity reflects the model error in the entire system.
This error can be minimized with respect ot the model parameters
Cijs i=n,...n, j=0,...M+l. by solving the sequence of equation

aez

Tc_i'j

=0, i=l,...,n, j=0,...,M+1 (6-29)

for the Cij- The solution yields the system parameters which
best characterize the model in a least squares sense.
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Because of the complexity of the system model, the computa-
! tion used to solve Equation 6-29 must be executed numerically.
Y 2_
. in the

, i=1,...,n,

This computation is a search for the minimum value of €
nX(M+2) dimension space of system parameters, Cij
j=0,...,M. The search can be carried out in one of two ways.
First, a search can be executed wherein the quantity €2 is

minimized sequentially with respect to each of the parameters
Cij- For example, €2 can be minimized with respect to 11

then C12> then €13 etc. The minimizing sequence is repeated

as many times as necessary to obtain convergence in €2,

The second approach to minimization of e is the gradient
search technique. la this technique, the gradient of e is
computed at a point in the Cij space. This information is used

(4 S

to choose a new set of parameters where €2 will be smaller than

its original value. At the newly adjusted point, €2 and its

gradient are recomputed, and this process is repeated until el
I is near its minimum. .

In the present investigation the former analytical approach
- is adopted. Numerical examples in Chapter 8 shows how a least
’ squares .computer program can be used to identify the parameters
[ of an MDF structure.

iy
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= CHAPTER 7
{; II ENERGY DISSIPATED RELATED TO CONCRETE DAMAGE
oo 7.0 Introduction

«
J W _"'AAA_.A_g;.J

. This presentation describes and evaluates an experimental
‘€ﬁ o study of the strength reduction and behavior of plain concrete

y subjected to cyclic loading. It is recognized that concrete is
damaged by application of stresses lower than the ultimate
stress. The concrete fracture process begins at very low stress

'’

and is continuous.

The damage caused by loading to small stresses is slight and
. Z: each subsequent loading over the same stress range produces a

o8 negligible increase in damage. However, as the loading stress is
- Eé increased, more damage occurs. Stresses with peak values in the i
range of 40 percent to 100 percent of the ultimate stress produce

considerable damage and subsequent loading over the same range
cannot be neglected. In practical situations, when a severe
| Ii excitation is applied to a structure, it is not uncommon for the i
5Silee peak stress to go beyond the 50 percent level of ultimate
R stress. ]

f; : When loading is repeated, damage accumulates in a concrete

g K specimen; consequently it no longer retains its original
strength. This concept suggests that it might be useful to
attempt a quantitative evaluation of damage occurring in concrete
e N during the cyclic loading. The objective of this study is to
demonstrate that concrete damage and strength reduction are
related to energy dissipation under repeated loading.

‘ When energy is dissipated during loading and unloading, an
SRS hysteresis loop is formed in the stress-strain curve as shown in

Figure 7-1. The area enclosed represents the total energy dissi-
y pated during one cycle of loading. This dissipated energy may be
= classified into two parts, namely, damage and damping energy
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f ) dissipation. However, the total accumulated energy dissipation
| || is of primary interest in this experimental study. A more
- detailed discussion of the energy dissipation mechanism is given
in Reference [69].

RARAR

There are many methods that can be used to detect and assess
- damage in concrete. Among the most frequently used techniques
} are those which assess change in initial elastic modulus, and
those which measure acoustic emissions, change in pulse velocity,
and energy dissipation. In the present study, the dissipated
energy method will be édopted. Attention will be focused on this

Lo means for measuring damage because of its intuitive relationship
. with the energy dissipation of an hysteretic structure under
EE dynamic loads. Other methods may be considered as in References
[69, 70, and 71].
j :k In the present investigation a sequence of physical experi-
3 ) ments was performed. In each experiment a concrete cylinder
I ll (specifications given below) was loaded in uniaxial compression.

. The load applied to each cylinder was a cyclic load, and the

- ff energy dissipated was calculated. This was done by plotting the
- stress versus strain diagram and by determining the area enclosed
[ | within the hysteresis loops. Varying amounts of energy were

B dissipated in the various test specimens, and upon completion of
cyclic testing each specimen was loaded to failure in order to
determine its residual strength. For each test specimen, dissi-
pated energy and residual strength were recorded and the relation
between these quantities was established.

More details of the testing procedure are given below,
together with fresh concrete properties observed during the mix-
ing. These may provide a useful reference for the concretes used
in the test.
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The concrete specimens tested in this investigation have the
mix details and plastic properties of fresh concrete as shown in
Table 7-1.

TABLE 7-1.
Concrete Mix Details

Aggregate Ratio of Maximum

Cement Coarse:Fine  Aggregate
Type of Cement W/C Ratio Ratio Aggregate Size
(in)
Type 1 A 0.53 4.8 60:40 3/4

Plastic Properties of Fresh Concrete

Room Unit
Mix No. Slump Air  Temperature Neighg
(in) % (degrees C) 1b/ft

2 WE 4 3.5 27 145.8
3 WE 41/4 4 30 148.96

The specimens were all cast in 6-in x 12-in steel cylinder
molds. The concrete mix proportions were constant for all the
specimens. The specimens were tested at a consant loading rate
of 1000 1b/sec in a RIEHLE compression testing machine. The
force versus strain results of each test were plotted with an x-y
electronic recorder. This recorder was connected by an elec-
tronic compressometer which is properly designed for this spe-
cific purpose as shown in Figure 7-2. The test machine was
properly calibrated before the test.

To ensure a uniform displacement of the specimens, thin sul-
fur caps on the two end surfaces of the specimens were employed
and were allowed to harden before testing. Specimens were cured
in water in the curing tank at 25°C for 14 days and 28 days.

e 2 s oz s
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In assessing the energy dissipated and residual strength,
l specimens were subjected to a series of cycles of loading and
unloading. The specimens were loaded up to a value in the range
o~ of stress, 90 - 94 percent of the ultimate stress. This ensured
g that damage occurred for every cycle of loading. At the end of
= each cylce of loading and unloading, the testing machine was
2 returned to a rest position, and reloading was commenced immedi-
ately. To ensure that concrete characteristics would be as
nearly uniform as possible, all the tests in each sequence were
run in one day.
7.1 Discussion of Results

Numerous physical experiments were conducted in this inves-
tigation and characteristics of concrete accumulating damage can
be derived from the individual tests and all the tests, jointly.
In the following section the characteristics of individual tests
are discussed first; then damage characteristics related to the
entire test sequence are discussed.

A typical stress-strain diagram obtained during one experi-
~ment is shown in Figure 7-3. A number of characteristic features
can be extracted from this result. On the initial cycle the
specimen was loaded to a stress near its ultimate (95 to 98 per-
- cent). It can be seen that the most significant change in behav-
ior between consecutive lbading cycles occurs between the first
TE and second cycle.

The first loading curve shows more curvature than the fol-
lowing reloading curves in which curvature tends to diminish.
The reloading curves show progressively decreasing slopes. This
may be attributed to structural degradation of the specimen.

b

Another measure of degradation can be established by plot-
ting the initial elastic modulus for a particular cycle versus
energy dissipation prior to that cycle. This is shown in Figure
= 7-4. As the energy dissipated gradually increases, the initial

elastic modulus diminishes.

........

.............



-
o«

L first loading and unicading

p—pp= second loading

QX

STRESS

e e e e e e e e e e et Wt e e S Cvm . e Ge e

—

[
-

ADC STRAIN'

Figure 7-1. Idealized first and second cycles.
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Figure 7-2. Test configuration.
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The above discussion was based on one typical sample. A

{- . similar discussion could be given for the other samples. Figures
NI 7-5, 7-6, and 7-7 show the stress-strain curves for some other

- specimens tested during this investigation.

~E- o Some general characteristics of the accumulation of damage

- in concrete specimens can be derived from the entire collection '
oo of results. A total of 24 concrete specimens were tested in this
investigation.

Y

A -{-.'.' .

= As noted earlier, the specimens were subjected to cyclic

v loadings inducing different amounts of energy dissipation in the

: various cylinders. Not all specimens were cycled to failure. At
least, three of the specimens were tested for the determination

P e g

I A Sk .
S
. ¢t 8 & 4

oy u of the ultimate strength. Other specimens, however, were cycled
til1l failure. The remainder of the specimens were cycled till a
0 'i certain amount of energy was dissipated; then these were loaded

';i - to failure in order to find their residual strength.

§ ll Using these data, a characteristic of the specimens can be
2 extracted. The total energy dissipated by each particular speci-
JE ;ﬁ men was plotted against the residual strength of the specimen as
T shown in Figure 7-9. Another result can be illustrated by plot-
‘2 !F ting the total energy dissipated versus percentage of decrease in
7 - strength as shown in Figure 7-8. Both diagrams show a decrease
"? ] in strength as the total energy dissipated is increased. Since
oo only a limited number of specimens were tested, no direct mathe-
— matical expression relating the residual strength to the total
energy dissipated was obtained. While such a relation could be
established, further testing is required to derive a general
relationship. However, the present results provide the informa-
— tion needed to conclude that energy dissipation is truly related
to the residual strength.

...........
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The experimental technique described above provides an
approach for the estimation of damage in concrete. Based on the L 2
physical experiments, the following conclusions can be made: g

1. The most significant change in the properties of the
concrete occur between the first cycle and second cycle Bt
when loading in the first cycle is severe. ot

2. The initial elastic modulus of the specimens gradually
diminishes as energy is dissipated. This implies that

the damage of .concrete under cyclic loading occurs

progressively.

3. The energy dissipated in a concrete specimen is
adversely related to residual strength. As the energy

dissipated increases, the residual strength decreases.
Therefore, energy dissipated may be used to predict the
damage of a structure under a severe loading. Moreover,
total energy dissipated may be considered as an
indicator of the degree of damage in an hysteretic

structure.

Some restrictions apply to the above conclusions. The work
is limited to behavior in uniaxial compression. Other types
of loading are possible and further tests are required to charac-
terize damage under general loading. It has been assumed that
the creep effect is small enough to be neglected in this
investigation.

.........
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CHAPTER 8 3
NUMERICAL EXAMPLES ;i
8.0 Data Description :
In this chapter numerical examples are presented which ;Z
demonstrate the use of the analytic procedures developed in the é
previous chapters. The first set of examples demonstrates the »
identification of the model parameters for linear and hysteretic, ?
single-degree-of-freedom (SDF) structures both when measurement i?
noise is and is not present. One example demonstrating the time i;

domain approach to parameter identification is summarized. Two 3
examples showing the frequency domain appraoch are presented. N

Another example demonstrates the application of the analysis
presented in Chapter 6. The frequency domain approach is used to
identify the parameters of a multi-degree-of-freedom (MDF)
structure.

The input used to excite the SDF system in all numerical
examples is a decaying exponential, oscillatory function. It is
generated using the formula '

N
f(t) = e'“t > c.cos{wt - ¢.) ] 0<t<KT (8-1)
j=1 9 J J - -

where o, cj, j=1,...,N, and ”j’ j=1,...,N are constants. ¢j’

j=1,...N, are phase angles which are random variable realiza-
tions; these random variables are independent and uniformhy

distributed on the interval (0, 2v). o is a decay rate. The
cj» j=0,...N, are constants which determine the amplitudes of
the excitation. A1l the values of cj are taken as equal to ¢
in all cases for the examples. wj, j=1,...N, are equally ik
spaced in the interval including the characteristic frequency of
the system being analyzed.
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The forcing function defined above was generated at discrete B

. times. Specifically, f(t) was evaluated at the times t=tj=1at, IJ

h 1=0,...N-1. A computer program, named FORCE, which generates the
excitation of Equation 8-1 was used in these numerical examplec.

Three distinct signal types were identified in the numerical

examples. The first type used a computer program, named BILIN,

? ' to compute linear and nonlinear response. BILIN can be used to

: find the displacement, velocity, and acceleration response of a

given bilinear hysteretic system to an arbitrary input. It also

computes the energy dissipated by the structure during the

response. The second type used a computer program, named TIMEVA,

to compute the response. This program computes a linear time

- dependent response defined by Equations 5-1 and 5-2 with a, B,
co, and ko constants. The third type used a computer program
named BLNMDF to compute the MDF structure response.

) White noise was used whenever measurement noise was added to
ll the signals. The white noise is normally distributed, N(O,ci).
- A subroutine named NOISE was used to generate the noise signal.
The noise signals were added to the generated input and response
signals in the following manner. First, the excitation and
i n response signals were generated using programs FORCE, BILIN,
o BLNMDF, and TIMVA. Then noise/signal ratios were selected and
used to obtain the variances of the noise signals. The noise
signals were generated as sequences of independent random vari-
- ables, and directly added to the excitation and response. These
7 noisy signals were then used as inputs to do the identification.
Note, no filtering procedure was used on the simulated measured
signals during the identification process.

Three basic models were used to represent the hysteretic
systems. These are the second order linear, time invariant,
third order linear, time invariant, and second order linear, time
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varying models. A1l the model parameters were identified. The
identification procedures and formulations were described
previously. Different identification approaches may be applied
for the same model.

8.1 Example 1

This example solves a parameter identification problem using
the direct time domain approach, summarized in Equations 3-4
through 3-12. The parameters of the shock input are listed in
Table 8.1. A typical forcing function history generated using
these parameters is shown in Figure 8-la. The derivative of the
forcing function is shown in Figure 8-1b.

The notations for the parameters used in specifying the
numerical examples are those used in the text. Some additional
notations are defined here. ¢ is the viscous damping in an SOF
system. k is the initial stiffness in a bilinear hysteretic
structure. k_y is the yield stiffness of a bilinear h 'steretic
structure. zy is the yield displacement of a bilinear hyster-
etic structure. zpay IS the maximum displacement of an SDF
structure.

In this numerical example, two basic problem types are
solved. These are summarized below.

(1) An input is generated using Equation 8-l1. The input is
used to excite a linear SDF system with viscous damp-
ing. The structural input and response are stored, and
no noise signals are added to the input and response.
Then the input and response are used to identify the
model parameters, 3y, j=0,...M+1, from Equation 3-5.

(2) An input is generated as in 1, above, but here the
response of a bilinear hysteretic system is computed.
No noise signals are added to the input and response.
The input and response are used to identify the model
parameters, aj, j=0,...M+1,
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For these two basic problems eight system identification
problems are solved. In cases one and five, problem type one
(above) is considered. In case one, a second order model (M=0),
Equation 2-3) is identified. In case five, a third order model
(M=1) is identified. In cases two through four and six through
eight, problem type two (above) is considered. In cases two
through four, a second order model (M=0) is identified. [n cases
six through eight, a third order model (M=1) is identified. The
successive cases involve increasing degrees of yielding. In
these eight cases, the parameters of the second order model, ag,
a1, and a2 (M=1) are identified.

Once the parameters of Equation 3-5 have been estimated, the
energy dissipated by the model is computed; and this is compared
to the energy dissipated by the actual system as computed in ~
BILIN. This computation is the one discussed in Chapter 2 and
given by Equation 2-7b. The energy computations are performed in
programs ENER2, for second-order systems, and ENER3, for third-
order systems. The computations are performed using an incre-
mental form of the governing Equation 3-3.

The responses of some SDF systems to the shock input in
Figure 8-1a were computed. First, the response of a linear sys-
tem was computed for analysis in cases 1 and 5. The computed
displacement response is plotted versus time in Figure 8-2a. The
SOF structure spring restoring force versus displacement is
plotted in Figure 8-2b. The very slightly nonlinear response of
an JDF structure was computed for analysis in cases 2 and 6, but
this response is not shown. A more nonlinear response was
computed for analysis in cases 3 and 7. The displacement
response versus time is plotted in Figure 8-3a, and the spring
restoring force versus displacement is shown in Figure 8-3b. The
first figure shows a residual plastic displacement as the
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response vibrations diminish. The second graph shows the perma-
nent set as lateral displacement of the horizontal axis inter-
cept. Finally, a very nonlinear response was computed for
analysis in cases 4 and 8. The displacement response versus time
is shown in Figure 8-4a and the spring restoring force versus
displacement is shown in Figure 8-4b. A considerable permanent
set is evident, as the motion diminishes, from the first figure.
The seond figure shows that large plastic deformations occur in

the structure in both directions of motion.

The energy dissipated by each structural system is listed
with the structural parameters in Table 8.1. Ep is that energy
dissipated due to the action of the inelastic spring and the

action of the viscous damper.

Using the forcing function input described above, and the
computed responses, the parameters of the structural systems were
jdentified. The results of the parameter identifications are
given in Table 8.1. The energy dissipated when the identified
systems respond to the shock input is listed in Table 8.1 next to
the identified parameters.

Figures 8-5a through 8-9b show the computed responses of
some of the identified systems. The figure titles indicate which
systems generate the responses shown. The top (or "a") figures
The bottom (or "b")
figures show the computed restoring forces, spring force plus

damper force, versus displacements.

show the computed responses versus time.

Figure 8-10 compares three responses. These are: 1) the
actual nonlinear structural response obtained using BILIN in the
slightly nonlinear cases 2 and 6, 2) the response executed by the
identified model described in case 2, and 3) the response
executed by the identified model described in case 6. The two
latter responses practically overlay and very nearly equal the
actual response.
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.
TABLE 8.1. PARAMETERS AND RESULTS FOR EXAMPLE 1
°
Input (Structural Excitation) -
Case Number N a C W) Wy n ot
1 through 8 50 1.0 300 32.4 1256.4 256 0.005 ®
Structure Parameters ',
Case Number m c k k z E "
a Y D
1,5 0.259 7.77 5829 - ® 23292 !
2,6 0.259 7.77 5829 0 7700 23588
3,7 0.259 7.77 5829 0 7000 23674 »
4,8 0.259 7.77 5829 0 5000 21959
Identification Parameters and Results
LI_:
Case Number : ﬂ ao 2y a, ED .
1 2 5829 7.77 21533
2 2 5825 7.79 21533 _
3 2 4574 8.13 21779 ke
4 2 1620 9.69 23844 -
5 3 5829 7.77 0.0 21533 -~
6 3 5823 7.85 0.0 21498 e
7 3 2527 99.65 0.0158 20824 .
8 3 610 108.11 0.0175 18666 B

T
o
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Figure 8-1la compares the actual nonlinear response of cases
3 and 7 to the second-order (M=0) model repsonse of case 3.
Figure 8-11b compares the actual nonlinear response of cases 3
and 7 to the third-order (M=1) model response of case 7. Both
models simulate response amplitudes quite well; the third-order
model is slightly closer than the second-order model in that the
third-order model provides a slightly better phase match to the
actual response than the second-order model.

In this numerical example, no cases are included where noise
was added to the forcing function input and/or the acceleration
response. Such cases were analyzed, but the results were so poor
that they are not summarized here. These results showed that the
direct, time domain parameter identification technique is not
effective in parameter analysis when recording noise is present.

The numerical examples summarized here show that the direct,
time domain parameter identifiction technique can be used effec-
tively when the measured signals are noise free. This is best
confirmed'by reference to Figures 8-10, 8-1la, and 8-11b. These
show that the linear model response can be made to match the
nonlinear response well,

The energy dissipation results, summarized in Table 8.1,
show that the third-order models provide the best simulatior for
a nonlinear hysteretic system.

8.2 Example 2.
In this example, a sequence of parameter identification

problems is solved using the frequency domain approach. Three
programs, FREQID, PUR3, and PUR, weire written to execute the
parameter identifications.

FREQID performs approximate frequency domain parameter
identification for second and third order linear models. It

e D W Y. el




D—ﬂ136 342 IDENTIFICATION OF DAMAGE IN HYSTERETIC STRUCTURES(U)
NEW MEXICO UNIY ALBUQUERQUE DEPT OF CIVIL ENGINEERING

M L WANG ET AL. JUL 83 AFOSR-TR-83-1238 AFOSR-81-8886
UNCLASSIFIED F/G 13/13.




e e e Al

o
EE

FEEEFEE

"EEEE
EERE

S
o

Il
&
=
=
=
ll=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

.

} PP PERRE . ataTA 8 aa

RPN T i i
B o o B B o

. l.' q.' L .“ ." " » . -t . ._‘ - ." .. .A‘
PP S NS W U PR PN S i SRS AP SR



RISt L s WAL gol gl g 2 -6 Rk SRR A T N O I L O T T AL A S

82
2.0
100 ad d :
=
. A Aok Aot
= . MULATNAR [ ARA A A A
: "WW'Y JVyivy
5 d !
& .
s Y X
b L ]
~2.0 = o
0.0 0.5 1.0 2.0
TIME - SEC
Figure 8-11a. The comparison between measured response
(1ight 1ine) and identified response for
second-order system. (Case 3)




< AT A
! * 8
e Y.t '

WA

o

|35

[ W

i
o

P2’ el

*'\ 'I ‘l .l .I

r,
\-
'l

(

»
l'.
d
)

lva

AN
P‘.’- s

A

P
s Yo'

vy

4

DISPLACEMENT - IN

z.o

m-ﬂ

-].o-

-2.0 : d
0.0 0.5 1.0 1.5

TIME - StC

Figure 8-11b. The comparison between measured response
(1ight 1ine) and identified response for
third-order system. (Case 7)




accepts both an input signal from FORCE and a response signal
from BILIN or TIMEVA. When desired, the white noise signals are
added to the corresponding input data. Then FREQID performs the
necessary Fourier transforms and other data operations. Follow-
ing this, the parameter identification is executed. One opera-
tion required in the parameter identification is estimation of
the characteristic frequency. This can be done simply by search-
ing Q(w) + e(w) for a minimum value. However, a more precise
method for determining the minimum value of Q(w) + €(w) defined
in Equations 4-8 and 4-11 involves use of a least square method.
In this improved method, Q{w) + €(w) is used to identify the
characteristic frequency and other parameters.

In FREQID, an important assumption was made for the third-
order model, Equation 4-21. In particular, it was assumed that
az s small in value. The parameters of this model! may be iden-
tified, without the assumption that a2z is small, by the search
technique. The computer program PUR3 was written for this pur-

pose. A detailed description of this method was given in
Chapter 5. |

Program PUR performs parameter identification for second-
order time varying linear systems. The approach is based on the
procedure described in Chapter 5. The program accepts the inputs
and responses generated in the programs FORCE and BILIN or
TIMEVA, with or without noise. Four parameters, namely ko, <,
Co, and B are identified. The program employs a search tech-
nique; the initial estimators can be chosen by using the identi-
fied parameters obtained from any of the methods.

Once the parameters have been estimated, the energy dissi-
pated by the model is computed. This result together with the
predicted response is compared to both the energy dissipated and
the response of the actual system. The energy and response
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computations are performed in program ENER2 and ENER3 for the
second and third order system, respectively.

From the above description, the methods used in the deter-
mination of the system parameters can be summarized as follows:

Method 1.

Method 2.

Method 3.

Method 4.

Method 5.

Method 6.

Performs parameter identification for the
second-order system in the frequency domain
utilizing Equation 4-15. No fitting equation for
Q(w) + e(w) is applied.

Performs parameter identification for the third-
order system in the frequency domain utilizing
the equations from 4-29a to 4-31. No fitting
equation for Q(w) + e(w) is applied.

Performas parameter identification using the same
approach as Method 1 except the input data

Q(w) + e(w) are replaced by the fitted polynomial
equation. This additional analysis is done in a
subroutine called FIT.

Performs parameter identification using the same
approach as Method 2 and using the same procedure
described in Method 3.

Performs parameter identification for the third-
order system using the search method described in
Chapter 5. The operation is executed in a
program called PUR3. Prior estimates obtained
from the above methods are used.

Performs parameter identification for the second-
order time-varying parameter system in the fre-
quency domain. The search method described in
Chapter 5 is used. This method also requires
prior estimators which can be obtained from the
information supplied in Methods 1 through 5.
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N A1l the methods described above can be used to estimate the

. ' parameters for the linear and nonlinear systems even when noise |
;N is present. The duration of the excitation must be long enough

3; . to characterize the system parameters.

J In the following numerical examples, four basic problems are
'! solved. These cases involving different degrees of nonlinearity

;’, N in the system response are summarized below. y
-‘ Case 1. An input excitation is generated using Equation ]
" 8-1. The input is used to excite a linear SDF i
~ system with viscous damping. The excitation and :

1 > linear response are used to identify the model ’
L o parameters. Noise signals can be added to the ’
. ] generated input and response, if required. ‘
S & Case 2 An excitation input is generated as in Case 1, «
3 = but here the response of a bilinear hysteretic 1
A system is computed. Yielding occurs in the i
28 ! response. The degree of nonlinearity was I
:‘; designed using a comparison between the yield X
‘“‘ ;: displacement of the bilinear system and the
) maximum displacement of the linear system. Let

2 L the yield displacement of the bilinear system be
B h zy. Let the maximum displacement of the linear -
YR system be Znax® In this case, z,, 1is taken as
i 6.7 and 2y is equal to 6.0.
: ; Case 3. Same as Case 2, but 2z is equal to 5.0.
Case 4.  Same as Case 2, but z, is equal to 4.0.
b a Case 5. An input excitation is generated as in Case 1. ‘
S The input is used to excite a linear SDF system :
o with time varying damping and stiffness. The , .
) excitation and response are used to identify the f
- E‘ model parameters. Noise signals are added to the

.:‘ simulated input and response when required.
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1‘.. The example carries out the parameter identification using

_ the methods described above. Specifically, methods 1 through 6
o are used to identify the parameters. The parameters of the input
:j‘: =3 excitation are listed in Table 8.2. The notation for the param-
TR
e Vi eters was specified above.
sl
RN . TABLE 8.2. PARAMETERS OF THE FORCING FUNCTION
£t
X a=01 N=5 c5=10.0 j=1,...,50
¢ NS wy = (1.8 + 0.008j)x ,j = 1,...50
- At = 0.05 n = 1024
Sl
'.‘s": e
j, N A typical forcing function history generated by using these
N ﬁ parameters is shown in Figure 8-12. Actual forcing functions
A . measured in the field usually contain a certain amount of noise.
:5\ ' Inputs with noise to signal ratios of six and eight percent are
3‘ shown in Figures 8-13 and 8-14, respectively.
1.

' The response of some SDF systems to the forcing input were

,\;,__.; - computed. The energy dissipated in each structure 'is listed with
ﬁ‘é 3 the structural parameters in Tables 8.3A and 8.38. A1l cases
B
{{- ) were described above. The notation of the system parameters is
o as follows: k is the initial stiffness; ¢ is viscous damping; k.y
"'7:' is the yield stiffness; z is the yield displacement; z,, is the
;‘-._3 - maximum displacement of an SDF system; m is the mass of the SDF
¢ i structure.
P ? TABLE 8.3A. SYSTEM PARAMETERS
-y k=39.48 c=1.27 m=1.0
2 Znax * 6.7 k,=0.0 4t =005 n=1024
ol %
o ACTI

" a
‘ n";
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Figure 8-12. Signal used to simulate the actual
input in Examples 2 and 3.
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Figure 8-13. Signal used to simulate the measured
input. (Includes 6% noise)
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, B TABLE 8.38. ENERGY DISSIPATION FOR CASE 1 THROUGH CASE 4
~ !! Cases zy Damping Energy Spfing Energy Togal Energy :
I Dissipated Dissipated Dissipated :
Case 1 = 11028.20 0.0 11028.2 j
- Case 2 6 10199.30 405.21 10604 .0 i
Case 3 5 8364.27 1186.74 3551.0 ;
'ﬁf 5 Case 4 4 6300.53 1924 .48 8225.0
:i T First, the response of a linear system (case 1) was com-
23 ' puted. Then, a slightly nonlinear response of an SDF structure
_:5 N was computed for analysis in case 2. The displacement response
&3 o versus time for case 2 is plotted in Figure 8-15. The spring
e N restoring force versus displacement is shown in Figure 8-16. A
;§ ! small plastic deformation is shown. The total restoring force
:; " versus displacement is plotted in Figure 8-17. The measured
i' responses for case 2 with a certain amount of noise are plotted
;E .. in Figures 8-18 and 8-19. Figure 8-18 shows a measured signal
e ﬁf with six percent noise to signal ratio. Figure 8-19 shows a
L~ measured signal with ten percent noise to signal ratio. Two more
a !! severe nonlinear responses were computed for analysis in cases 3

2 and 4.

L
i

The displacement response versus time for case 4 is plotted
& in Figure 8-20, and the measured response for case 4 with ten
percent noise to signal ratio is shown in Figure 8-21. The

b3

3 spring restoring force versus displacement is shown in Figure

L)

s ;S 8-22. A considerable permanent set is evident in Figure 8-20. .
o Figure 8-22 shows that plastic deformation occurs in the struc- N
D ture in both directions of motion.
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.- Using the forcing function input, described above, and the

; ' . computed responses, the parameters of the structures were identi-

,.f fied. The results of the parameter identification are given in

:’ Tables 8.4 through 8.7. These results provide the identified

il parameters in the noise-free case. The energy dissipated by the

) identified system is listed next to the identified parameters.

::3 For method 6, the parameters ap, ai, az, and a3 identify with the ;
S{I “ parameters ko, B, co, and a, respectively. :
S ]
N TABLE 8.4. [IDENTIFIED PARAMETERS AND ENERGY DISSIPATED

3 % FOR CASE 1

S o Method ao a1 az as Energy

N B 1 39.17 1.26 11210.0

o 2 39.17 1.28 0.0 11090.0 3
% 3 40.01 1.28 10720.0 ]
% 4  40.01 2.48  0.0236 9270.0 3
- . 5  39.50 1.26 0.0 11200.0 i
S 6 39.33 0.0 1.274 0.0 10741.0

T TABLE 8.5. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED

= - FOR CASE 2

:ﬁ Method ao a) az as Energy

‘;:: 3 1 33.27 1.45 7968.0

AR 2 33.27 3.98 0.05 7028.0

N - 3 35.84 1.28 10500.0

2 4  35.88 3.57 0.042 7690.0

2 5 34.27 3.68  0.062 10370.0

7 6 36.56 0.001 1.094 0.022 10077.0
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TABLE 8.6. IDENTIFIED PARAMETERS AND ENERGY
DISSIPATED FOR CASE 3

Method ag al az as Energy
1 33.27 - 1.35 7802.0
2 33.27 2.98 0.032 7368.0
3 35.32 1.41 9482.0
4 35.32 2.74 0.027 8185.0
5 32.54 2.98 0.042 8324.0
6 40.21 -0.0013 1.589 -0.018 9661.0

TABLE 8.7. IDENTIFIED PARAMETERS AND ENERGY
DISSIPATED FOR CASE 4

Method ao ajl a2 as Energy
1 33.27 1.67 7376.0
2 33.27 2.28 0.014 7053.0
3 34.61 1.75 7703.0
4 34.61 2.50 0.018 7486.0
5 30.30 3.9 0.066 7598.0
6 40.26 -0.0018 1.708 0.001 8186.5

Section 4.0 demonstrated that when the higher order
linear model is used to simulate the actual system behavior, the
parameter ap must be estimated first in the identification pro-
cedures, methods 1 through 4. The estimation of this parameter
can be executed either by simply searching for a minimum in
Q(w) + €(w), or by using a curve-fit to Q(w) + €(w), and then
finding the minimum of the curve. Figure 8-23 shows a realiza-
tion of Q(w) for a specific case. This is the ratio of the
Fourier transform moduli of the structure input and response. An
example of the quantity Q(w) + €(w) is shown in Figure 8-24. It
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.......
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is apparent from this diagram why the use of a curve-fit provides
better results.

Figures 8-25 through 8-27 show comparisons between the
responses of the identified systems computed by different meth-
ods, and the actual response of the bilinear hysteretic system in
case 2. The responses of the identified systems match the
response of the actual system so closely that it is difficult to
distinguish the two responses in these figures. More identified
responses for case 4 are shown in Figures 8-28 through 8-30. The
model responses do not match the actual response as closely when
residual deformation exists in the actual structure since the
models cannot accumulate permanent deformation. However, peak
responses in the models match the actual system response quite
well.

In this example, noise was added to the forcing function and
response signals; then the system parameters were identified.
The results are summarized in Tables 8.8 and 8.9.
TABLE 8.8. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED
FOR CASE 1 WITH TEN PERCENT NOISE TO SIGNAL RATIO

Method ao a1 az as Energy
1 39.17 1.37 11022.0
2 39.17 1.45 0.003 10900.0
3 39.93 1.42 10300.0
4 39.33 2.44 0.022 9497.0
5 34.30 2.98 0.051 11710.0
6 38.44 0.0 1.286 0.0 10929.0
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TABLE 8.9. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED
FOR CASE 4 WITH TEN PERCENT NOISE TO SIGNAL RATIQ

Method ao a) az as Energy
1 33.27 1.89 7092.0
2 33.27 1.42 0.021 9980.0
3 32.02 1.95 6476.0
4 32.02 2.60 0.021 6803.0
5 34.46 2.70 0.043 11400.0
6 32.83 0.0026 1.543 0.011 7016.0

These results show that the parameter identification procedure is
still effective when noise is present.

8.3 Example 3
In this example, a parameter identification problem is

solved using the frequency domain approach. The methods used to
identify the parameters were described in section 8.2, namely
methods 1 through 6. The same forcing function as illustrated in
Example 3 is used. The only difference in this example is that
the response was simulated by a second-order time varying param-
eter system. Unlike the responses simulated in Example 2, this
example is a linear system with time dependent stiffness and
damping. The parameters of the system and total energy dissi-
pated are listed in Table 8.10.

TABLE 8.10. SYSTEM PARAMETERS FOR CASE 5

ko = 39.48 co = 1.257
B =-0.01 a = 0,01
Total Energy = 9799.0

The definitions of the symbols are the same as in Equation 5-2.
This case was described in section 8.2 as case 5.

. - .. oAl et

-,

e T AT AT S e e R : . . - S e e :
WO A e A e e T e Y L e T L L e el e e o T




T MR S e B iviaib k& LAMIML S Gk et ad et At el wdbe bt o Det D et A S e e q

104

The displacement response versus time for case 5 is shown in
Figure 8-31. The total restoring force versus displacement for
this case is illustrated in Figure 8-32. Note that the major
axis of the loops depicted in the diagram have different slopes.
This occurs because the system stiffness diminishes with time.
The parameters identified using methods 1 through 6 together with
the total energy dissipated in the corresponding systems are
shown in Table 8-11.

TABLE 8.11. [IDENTIFIED PARAMETERS AND ENERGY DISSIPATED

FOR CASE 5
Method ap al az as Energy
1 34.70 1.36 9266.0
2 34.70 3.25 0.039 7883.0
3 37.15 1.29 10960.0
4 37.15 2.82 0.031 9074.0
5 34.31 2.97 0.05 11160.0
6 37.56 - 0.006 1.23 0.019 9120.2

It is shown that methods 1 through 6 can also be used to identify
model parameters when noise is present. The results obtained
when the measured signals contain noise are shown in Table 8.12

TABLE 8.12. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED
FOR CASE 5 WITH SIX PERCENT NOISE TO SIGNAL RATIO

Method ao a1 az as Energy
1 34.70 1.38 9419.0
2 34.70 2.75 0.03 8623.0
3 37.34 1.31 11180.0
4 37.34 2.24 0.021 10280.0
5 34.32 2.49 0.038 11040.0
6 38.30 - 0.007 1.254 0.025 9245.6
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Figures 8-33, 8-35, and 8-36 compare the identified system
responses to the response of the actual system. The simulated
and actual responses match quite well in all cases. The model
including time parameters provides the best match. Figure 8-34
shows the total restoring force versus displacement. A change in
slope of the major axis of the loops is observed. This behavior
matches the real system behavior shown in Figure 8-32.

8.4 Example 4
In this example, a two degree-of-freedom (2DF) system is

considered and its parameters are identified by using the proce-
dure outlined in Chapter 6. The system is a shear-beam lumped
mass structure as shown in Figure 6-1.

The parameters of the input excitation are listed in Table
8.13. The notation for the parameters is the same as in previous
examples. A typical'forcing function generated using these
parameters is shown in Figure 8-37. In some of the following
analyses noise is contained in the measured data. An input with
noise to signal ratio of eight percent is shown in Figure 8-38.

TABLE 8.13. PARAMETERS OF THE FORCING FUNCTION

a =0.1 N =50 cj = 10.0 j=1,...,50
At = 0.05 n = 1024 wj = (1.6 + 0.04 j)=, j=1,...,50

The response signals used to represent the measured signals
were generated by computer program BLNMDF. BLNMDF generated the
displacement, velocity, and acceleration response of a bilinear
MDF system. First, the response of a linear system (case 1) was
computed. Then, a nonlinear response was computed for analysis
in case 2.

The structural parameters used in cases 1 and 2 in this
numerical example are given in Table 8.14. The numerica) sub-
scripts on the parameters refer to the story and mass numbers
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Figure 8.32. Total restoring force versus displace-
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TABLE 8.14. SYSTEM PARAMETERS (cases 1 and 2)
k1 =39.48 ¢1=1,257 m=1.0
k2 = 39.48 «c2 = 1.257 m=1.0
At = 0.05 n = 1024 ¥4, = 1.2, y4, = 1.0 (for case 2)

in the 2DF system. Since yielding only occurs in case 2 the
yield level parameters are only used in case 2.

The displacement response versus time for case 1 is plotted
in Figures 8-39 and 8-40. Note, the displacement is relative
displacement with respect to each degree-of-freedom. The rela-
tive displacement histories for case 2 are shown in Figures 8-41
and 8-42. Figures 8-43 and 8-44 show the measured signals with
ten percent noise to signal ratio corresponding to the actual
response measurements in Figures 8-41 and 8-42.

The energy dissipated by the structure during the structural
responses of cases 1 and 2 are presented in Table 8.15. Energy
quantities dissipated in both first and second stories are
given. Note that similar amounts of energy are dissipated in the
linear and nonlinear structures.

TABLE 8.15. ENERGY DISSIPATION

First Storx Second Story Total

Case 1 (Linear) 527.80 53.00 580.80
Case 2 (Nonlinear) 447 .20 105.10 552.30

The program MDFID performs a frequency domain parameter
identification for the second and third order linear model. It
accepts both an input signal from FORCE and response signals from
BLNMOF. The white noise signals are added to the corresponding
input data whenever noises are included in the analysis. It
should be noted that when noise .signals are included in the
responses, a different signal is added for each degree-of-
freedom.
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MOFID performs the necessary Fourier transforms and other
data operations. Then the parameter identification is executed.
Once the parameters are known, the energy dissipated in each
degree-of -freedom is calculated.

The parameters identified using the program MOFID are listed
in Tables 8.16 through 8.19. The system parameters identified
for case 1 (1inear response) where no noise is included in the
measured signals, are given in Table 8.16. The system parameters
identified for case 1, where noise is included in the measured
signals, are given in Table 8.17.

TABLE 8.16. IDENTIFIED PAAMETERS AND ENERGY DISSIPATED
FOR CASE 1 WITHOUT NOISE
Convergence Criteria = 4 percent

order ki k2 c1 c2 al az Ei E2 ET

second 41.79 42.10 1.29 0.90 -- -- 570.9 42.17 613.0
third 41.30 43.21 1.76 0.605 0.0093 0.0014 634.5 29.66 664.2

TABLE 8.17. [IDENTIFIED PARAMETERS AND ENERGY DISSIPATED
FOR CASE 1 WITH NOISE
Convergence Criteria = 4 percent

order k) k2 c1 c2 al az E, E2 ET

second 44.37 38.4 1.30 0.90 -- -- 563.1 56.22 619.3
third 43.45 39.07 1.38 0.96 0.0005 0.0037 592.7 42.80 635.5

The system parameters identified for case 2 (nonlinear)
where no noise is included in the measured signals are given in
Table 8.18. The system parameters identified for case 2, where
noise is included in the measured signals, are given in Table
8.19. Each table lists a convergence criterion used in obtaining
the parameter estimates. These quantities reflect a limit on the
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change in parameter value required in the computation before the
identification computation is terminated. The smallest conver-
gence criteria values yield the most accurate results.

TABLE 8.18. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED
FOR NONLINEAR CASE (CASE 2) WITHOUT NOISE
Convergence Criterion = 4 percent

order k; k2 c1 c2 a1 az E; Ez ET

second 29.04 33.87 1.81 1.81 - - 861.3 81.43 948.73
third 29.07 32.30 2.11 1.89 0.0082 0.0048 676.10 140.60 816.70

TABLE 8.19. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED
FOR CASE 2 WITH NOISE

Convergence Criterion = 2 percent
order ki k2 c1 C2 ai a2 El E2 ET

second 35.33 19.91 1.21 1.38 -- - 434.8 142.6 577.3
third 35.67 18.671 1.20 1.31 0.0033 0.001 397.1 133.2 530.3

Comparisons among Tables 8.14, 8.16 and 8.17 show that the
parameters obtained using the program MDFID provide good esti-
mates of the actual system parameters. The structural responses
predicted using the second and third order models are shown in
Figures 8-45 through 8-48 where they are compared with the actual
responses. Model responses and energy dissipated were computed
using computer program HOMDF. Figure 8-45 shows the relative
displacement response between the base and mass 1 for the second
order model (parameters from Table 8.16) and the actual response
(Figure 8-39). The responses are almost identical. Figure 8-46
shows the corresponding relative displacement responses between
masses 1 and 2. Figure 8-47 shows the relative displacement
response between the base and mass 1 for the third order model
(parameters from Table 8.16) and the actual response (Figure
8-39). The responses are almost identical. Figure 8-46 Sshows
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;;? the corresponding relative displacement responses between masses
(} ‘I 1 and 2. Figure 8-47 shows the relative displacement response
322 - between the base and mass 1 for the third order model (parameters
rzgi o from Table 8.16) and the actual response (Figure 8-39). Again,
S responses are almost identical. Figure 8-48 shows the corres-
K m ponding relative displacement responses between masses 1 and 2.
The energy dissipated during structural response was com-
puted using the second and third order models in program HDMDF,
‘ using the parameters identified in the presence of no noise and
f}i e the parameters identified in the presence of noise. The results
5; . are given in Table 8.16 and 8.17. In both cases good agreement
.;§ . with the actual energy dissipated is found.
?% & Comparison among Tables 8.14, 8.18 and 8.19 show that the
;:i ’ parameters obtained using the program MDFID are changed. This
fzi ;E change reflects the system nonlinearity. The structural

I responses predicted using the second and third order models for
ll case 2 are shown in Figures 8-49 through 8-52 where they are
" compared with the actual nonlinear responses. Model responses

s

and energy dissipatad were computed using computer program
HOMDF. Figures 8-49 and 8-50 show the relative displacement
i K responses for the second order model (parameters from Table 8.19)
AL and the actual responses (Figures 8-41 and 8-42). The model
responses do not match the actual response as closely when resid- :
ual deformation exists in the actual structure since the models 3
_ - cannot accumulate permanent deformation. However, peak responses |
if§ 'f in the model match the actual system response quite well. Fig-
- ures 8-51 and 8-52 show the relative displacement responses for \
. the third order model (parameters from Table 8.19) and the actual i
A . responses (Figures 8-41 and 8-42). Again, responses are not |
.. closely predicted by the model. However, peak responses of the
model match the actual response very well.
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Consideration of the entire collection of results shows that
the third order model provides the best simulation of nonlinear
system behavior when the criteria of peak response and energy
dissipated are used.
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CHAPTER 9
SUMMARY AND CONCLUSIONS

The objective of this study was to develop approximate
linear models for the simulation of inelastic system response and
the measurement of damage accumulation in a structure. It was
assumed that energy dissipated is related to the accumulation of
damage. The model parameters were identified; then the energy
dissipated during a strong motion was calculated. The displace-
ment response and the energy dissipated in each model were com-
pared with the displacement response and energy dissipated in the
actual structure.

Three basic models were considered in this study. These are
second and third order linear models with constant coefficients,
and a second order linear model with time-varying parameters.

The parameters of the models were estimated using two basic
approaches, namely time domain and frequency domain approaches.
The time domain approach was first introduced to estimate the
model parameters by using the least squares method through which
the modeling error is minimized with respect to the measured
data. One reason for not using the time domain approach through-
out this investigation is that the parameters identified using
the time domain approach are inaccurate when noise signals are
present.

Then, the frequency domain approach was used to identify the
model parameters. In this approach, both analytical and search
techniques were applied to find the system parameters. A good
set of initial guesses of the parameters was an important concern
when the search technique was used to execute the identification
process.
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Several numerical examples were solved, and some of them are
summarized. Experience obtained in solving the numerical exam-
ples lead to the following conclusions.

Fi (1) Linear and nonlinear hysteretic SDF systems can, in
some respects, be accurately modeled using second-and
third-order linear differential equations with constant
coefficients, and a second-order linear differential
equation with time-varying coefficients. Specifically,
the models provide accurate simulation when displace-
ment response and energy dissipated criteria are used.

(2) A direct, time domain approach can be used to identify
Eé model parameters when the force input and acceleration
response measurements are not noisy.

(3) The frequency domain approach can be used to identify
model parameters of all three models when the force and
. response measurements are noisy.

(4) The second order model with time-varying coefficients
provides the best simulation of system response and
energy dissipated among the three models considered.

LAY

(5) The parameters of both single-degree-of-freedom (SODF)
and multi-degree-of-freedom (MDF) systems can be iden-

o tified. The numerical examples show that one and two
= degree-of -freedom systems can be identified. For the
model presented in Chapter 6, it is anticipated that
some difficulty would exist in identifying the param-
- eters of a system with three or more degrees of freedom
U due to the number of parameters involved.
:; . (6) The energy dissipated in a structural system is related
o R to system damage.
S
® iy
2
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T
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While the procedure developed in this investigation provides
means for the simulation of response and the estimation of damage
in inelastic structures, some improvements can be made. The
systems considered in this study are one and two-degree-of-
freedom; future investigations should include many degree-of-
freedom structures. The models used in this study do not permit
the accumulation of plastic deformation; future investigations
should consider models that allow plastic deformation to accumu-
late. The tests that are summarized in Chapter 7 show that
material damage is related to energy dissipated; future experi-
ments should be performed, and a mathematical model characteriz-
ing the results should be developed. Finally, analyses should be
performed to est;blish the spacial distribution of energy dissi-
pated in actual structural members.
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* PROGRAM "BILIN" *

(X2 X E 2 XXX ARSI AR AR A ARSS XA X2 X3

SN: EXCITATION NOISE

RN: RESPONSE NOISE

MAXIMUN DISPLACEMENT EAQUL TO 6.7
INDEX=1 MEANS NOISE PRESENTED

DIMENSION SF(1024),DD(1024),SN(1024),RN(1024)
DIMENSION AA(1024),RESF(1024),SK1(1024),SPI(1024)
CALL OPSYS('ALLOC','RH1',10)
CALL OPSYS('ALLoOC','FD1',15)
CALL OPSYS('ALLOC','RH2',25)
INDEX=1

N=1024

SM=1.0

SC=1.256637

SK=39.48

YSTI=0.0

YDIS=4.0

DT=0.05

READ(10,50) (SF(I),SN(I),I=1,N)
READ(25,55) (RN(I),I=1,N)

CALL BILIN(SF, SC,SM, SK,YSTI,YDIS,DT,N,DD, ENED, SPI)
IF(INDEX.EQ.1) GO TO 45

DO 12 I=1,N

T=DT*(I-1)
RESF(I)=SF(I)-SM*AA(I)
WRITE(15,50)T,DD(I)

CONTINUE

GO TO 60

DO 40 I=1,N

T=DT*(I-1)

SF(I)=SF(I)+SN(I)
DD(1)=DD(I)+RN(1I)
WRITE(15,50)T,DD(1I)

FORMAT (2E12. 4)

FORMAT(E12.4)
WRITE(6, * )ENED, ENED1, ENED2
STOP

END

SUBROUTINE FOR GENERATING THE BILINEAR
HYSTERETIC SYSTEM.

C7 : DAMPING

SM7: MASS

SK7: STIFFNESS

A7 : YIELDING STIFFNESS

V7 : YIELDING DISPLACEMENT

D9 : TIME INCREMENT
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V : OUTPUT DISPLACEMENT

V1l : OUTPUT VELOCITY

VO : OFFSET DISPLACEMENT

V2 : OUTPUT ACCELERATION

ENED: ENERGY DISSIPATED

SPI:SPRING RESTORING FORCE
ENED1:TOTAL SPRING ENERGY DISSIPATED
ENED2 : TOTAL DAMPING ENERGY DISSIPATED

SUBROUTINE BILIN(F,C7,SM7,SK7,A7,V7,D9,N,V,ENED, SPI)
DIMENSION V(N),V0(1024),V1(1024),V2(1024),F(N)
DIMENSION SPI(1024)

U7=SK7*V7

SK9=1.0-A7/SK7

INITIALIZE VARIABLES

V(1)=0.
VO(1)=0.
V1(1)=0.
V2(1)=F(1)/SM7

START THE RESPONSE CYCLE

Q1=6.0*SM7/D9**2
Q2=3.0*C7/D9
Q3=6.0*SM7,/D9

Q4=3 .0*SM7

Q5=3.0*C7
06=0.5*D9*C7
07=3.0/D9

08=3.0

09=0.5*D9

SK8=SK7

NM=N-1

ENED=0.0

ENED1=0.0

ENED2=0.0

DO 1199 I=1,NM
I1=I+1

U1=Q1+Q2+SK8
U2=Q3*V1(1)+Q4*V2(I)
U3=Q5*V1(1)+Q6*V2(I)
V5=(F(11)-F(I)+U2+U3)/Ul
V6=Q7+V5-08*V1(1)-Q9*V2(1I)
V(I1)=V(I)+V5
V1(I1)=V1(I)+V6

COMPUTE THE STIFFNESS AT T+DT

XO0=SK7*(V(Il1)-VO(I))
X1=A7*(V(11)=-V7)+U?7

IR IUNISY - WO
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1150

1160

1170

1199

X2=A7*(V(11)+V7)-U7

IF(X0.GT.X1)GO TO 1150
IF(X0.LT.X2)GO TO 1160

SK8=SK7

VO(I1)=VO(I)

GO TO 1170

IF (V1(I1).GT.0.0)SK8=A7

IF (V1(I1).LE.O.O)SK8=SK7
VO(I1)=(V(I1)-V7)*SK9

GO TO 1170

IF (V1(I1).LT.O.0)SK8=A7

IF (V1(I1).GE.O.0)SK8=SK7
VO(I1)=SK9*(V(I1)+V7)
SPI(I1)=SK7*(V(I1)-VO(Il))
V2(I1)=(F(I1)-C7*V1(I1)-SPI(I1))/SM7
ENED=ENED+D9*0.5* (V1(I)*(F(I)-SM7#V2(1))+V1(I1)*

+(F(I1)-SM7*V2(Il1)))

ENED1=ENED1+D9*0.5%(V1(I)*SPI(I)+V1(I1)*SPI(I1))
ENED2=ENED2+D9*0.5*%(V1(1)*C7*V1(I)+V1(I1)*C7*V1(I1))
CONTINUE

RETURN

END

khkhkhkhkhhkkhkhkrhhhhhhhkhhbhrhhkhhhhhkththhhthkk

* PROGRAM " TIMEVA" *
I T I

SOLVE FOR THE SECOND O.D.E.

(TIME VARIED PARAMETERS)

SN: INPUT NOISE

YN:RESPONSE NOISE

ALPHA:TIME VARIED COEFFICIENT FOR K
BATA:TIME VARIED COEFFICIENT FOR C

READ(5,*) CO,AKO,ALPHA,BATA

CALL OPSYS('ALLOC','RH1',15)

CALL OPSYS('ALLOC', 'RH3',65)

CALL OPSYS('ALLOC','RH2',13)

CALL OPSYS('ALLOC','ID3',67)

DIMENSION DY(2),Y(2),F(42),SN(1024),YN(1024)
DIMENSION SF(1024),TS(1024),S(1024), INDEX(1024)
DIMENSION Y3(1024),V(1024)

EXTERNAL SPLINE

COMMON /ARRAY/ TS,SF,S, INDEX

NTS=1024

DT=0.05

READ(15,8) (SF(I),SN(I),I=1,NTS)
READ(13,33) (YN(I), I=1,NTS)

DO 2 I=1,NTS

TS(1)=DT*(I-1)

CONT INUE
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CALL SPCOEF(NTS,TS,SF, S, INDEX)
SM=1.0

N=2

TT=NTS*DT

T=0.0

Y(1)=0. ‘
Y(2)=0.0
ENER=0.0
L=3

M=0

CALL RUNGE(T,DT,N,Y,DY,F,L,M,J) -
IF(M-1)75,10,75

GO To (100,200,999),L

FQ=-FF(T)

DY(1)=Y(2)
DY(2)=-(1.+ALPHA*T)*AKO*Y (1)~ (1.+BATA*T)*CO*Y(2)+FQ
GO TO 50

I=T/DT+1.1
Y3(I)=(1.+ALPHA*T)*AKO*Y(1)+(1.+BATA*T)*CO*Y(2)
V(I)=Y(2)

IF((I-1).EQ.0) GO TO 111

ENER=ENER+DT#*0.5%* ((Y3(I)*V(I))+(¥3(I-1)*V(I-1)))

GO TO 250

ENER=DT*0.5*(Y3(1)*V(1))

NOISE CASE

SF(I1)=SF(I)+SN(I)
YRK=Y(1)+¥YN(I)
WRITE(65,800)Y(1),Y¥3(I)
IF(T-TT)260, 999,999

GO TO 50

FORMAT (2E12. 4)

FORMAT (2E12. 4)
FORMAT(E12.4) ;
WRITE(6,*) ENER
STOP

END

Ca m. &

. a———ra _a_a

REAL FUNCTION FF

FUNCTION FF(T)

DIMENSION TT(1024),FT(1024),SS5(1024), INDE(1024)
COMMON /ARRAY/ TT,FT,SS, INDE

N=1024 |
QA=SPLINE(N,TT,FT,SS, INDE,T) )
FF=QA :
RETURN

END

SOLVING N-TH ORDER ODE

...........
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SUBROUTINE RUNGE(T,DT,N,Y,DY,F,L,M,J)
DIMENSION DY(2),Y(2),F(42)
GO TO (100,110,300),L
100 GO TO (101,110) ,IG
101 J=1
L=2
DO 106 K =1,N
K1=K+3*N
K2=K1+N
K3=N+K
F(K1)=Y(K)
F(K3)=F(K1)
106 F(K2)=DY(K)
GO TO 406
110 DO 140 K=1,N
K1=K
K2=K+5*N
K3=K2+N
K4=K+N
GO TO (111,112,113,114),J
111 F(K1)=DY(K)*DT
Y(K)=F(K4)+.5*F (K1)
GO TO 140
112 F(K2)=DY(K)*DT
GO TO 124
113 F(K3)=DY(K)*DT
GO TO 134
114 Y(K)=F(K&)+(F(K1)+2.*(F(K2)+F(K3))+DY(K)*DT) /6.
140 ;

BT ORI

GO TO
124 Y(K)=.5*F(K2)
Y(K)=Y(K)+F(K&)
GO TO 140
134 Y(K)=F(K4&)+F(K3)
140 CONTINUE
GO TO (170,180,170,180),J
170 T=T+.5*DT
180 J=J+1
IF(J-4)404, 404,299
299 M=1
GO TO 406
300 IG=1
GO TO 405
404 1G=2
405 L=1
406 RETURN
END

******************************************

* PROGRAM " URAND" *

******************************************
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THIS PROGRAM IS FOR GENERATING THE RANDOM SIGNAL

CALL OPSYS('ALLOC', 'RH2',66)

CALL OPSYS('ALLOC', 'RH1',65)

CALL OPSYS('ALLOC','RH&',77)

REAL*8 URAND

REAL S(1024),SS(1024),DS(1024),T(1024),TPF(1024)
REAL EPS(1024),SF(1024),0UN(1024),RENOI (1024)
DIMENSION PS(1024),IND(1024),PHI(1024)

DOUBLE PRECISION FD(1024)

EXTERNAL URAND

INITIALIZATION
WHEN INDEX=1 SHOWS NO DERIVATIVE FOR FORCE,
OTHERWISE WILL GO TO DERIVATIVE INCLUDING NOISE

RATIO :NOISE/SIGNAL RATIO

S(I) :FORCE

DS(1) :DERIVATIVE OF THE FORCE

SF(1) :FORCE + NOISE

FD(I) :DERIVATIVE OF (FORCE+NOISE)
ZETA :DAMPING OF THE SYSTEM

ALPHA :DECAY RATIO

NT : TOTAL NUMBER OF POINT

FN :NATURAL FREQUENCY ,
NF :NUMBER OF POINT IN THE FREQUENCY BAND
INDEX=0

RATIO=0.0036

ZETA=0.1 :
DT=0.05

NF=50

NT=1024

NN=NT+1

NSEED=0

ALPHA=0.1

C=10.0

PI=4.0DO*DATAN(1.0DO)

FN=2.*PI

CALCULATE THE FREQUENCY AND TIME

F1=FN-(2.*ZETA*FN)
IF(F1.LT.0.0) F1=0.0
F2=FN+(2.*ZETA*FN)
FB=F2-F1
DF=(F2-F1)/NF
F3=F1-(DF/2.0)

S1:VARIANCE OF THE FORCE NOISE
S2:VARIANCE OF THE OUTPUT NOISE

S1=FB*RATIO*C*C/(2. *DF)
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- S2=PI*RATIO*C*C/(8.*DF* (EN**3)*ZETA)
. DO 8 K=1,NF
! TPF (K)=F3+ (K*DF)
(N | PHI (K)=2. *PI*URAND (NSEED)

5 8 CONTINUE

DO 9 J=1,NT

- T(J)=(J-1)*DT
.i 9 CONTINUE

RS C
_ - C GENERATE THE EXCITATION AND ITS FIRST DERIVATIVES
D i C

A DO 11 J=1,NT

S(1)=0.

SS(1)=0.

DO 11 K=1,NF

S(J)=S(J)+1.*C*COS(TPF(K)*T(J)-PHI(K))

S SS(J)=SS(J)+1.*C*TPF(K)*SIN(TPF(K)*T(J)-PHI(K))

o 11 CONTINUE

N DO 12 J=1,NT

R S(J)=S(J)*EXP(-ALPHA*T(J))

S d DS(J)=-SS(J)*EXP(-ALPHA*T(J))~-S(J)*ALPHA
12 CONTINUE

GENERATE THE RANDOM EXCITATION INCLUDES NOISE.
OUN:FORCE NOISE,EPS: RESPONSE NOISE.

Qaaoaaon

N CALL NOISE(OUN,NN,S1,1)

I CALL NOISE(RENOI,NN,S2,2)
CALL NOISE(EPS,NN, S2,NSEED)
o IF(INDEX.EQ.1) GO TO 40

by FD(1)=0.0 )
DO 15 I=2,NT ]
FD(I)=DS(I)+(OUN(I+1)-OUN(I-1))/(2.0*DT)
15 CONTINUE
SXEED 35 DO 38 J=1,NT
y 38 WRITE(65,22) S(J),DS(J)
N GO TO 18
RS 40 DO 42 I=1,NT
WRITE(77,21)RENOI(I)
- WRITE(66,21)EPS(I)
: 42 WRITE(65,13)S(I),0UN(I)
13 FORMAT(2E12.4)
& 17 FORMAT(9X,'TIME', 11X, 'FORCE',1X, 'FIRST DERIVATIVE',/)
L 21 FORMAT(1El2.4)
SO 22 FORMAT(2E12.4)
18 STOP
N END

aaon

SUBROUTINE NOISE(DPS,N, S2,NSEED)

S
h )
Qa0 O

THIS SUBROUTINE GENERATES A SEQUENCE OF WHITE NOISE

(DRI D - RS S
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c IT'S LENGTH IS N, MEAN ZERO, VARIANCE S2

: ;
REAL*8 URAND '
REAL X(12),DPS(N) b
C=SQRT(S2) g
DPS(1)=0.0
DO 2 1=2,N
DPS(1)=0.0
DO 1 J=1,12
X(J)=URAND (NSEED)

1 DPS(I)=DPS(I)+X(J)
2 DPS(1)=(DPS(I)-6.0)*C
RETURN

&

POION 4

END
REAL FUNCTION URAND*8(1Y)
INTEGER 1IY

- T

URAND IS A UNIFORM NUMBER GENERATOR BASED ON THE
THEORY AND SUGGESTIONS GIVEN IN D.E. KNUTH (1969).

N

i
INTEGER 1A, IC,ITWO,M2,M,MIC a
DOUBLE PRECISION HALFM :
REAL S .
DOUBLE PREC.SION DATAN,DSQRT o
DATA M2/0/,1TWO/2/

IF (M2 .NE. 0) GO TO 20

X
b
IF FIRST ENTRY, COMPUTE MACHINE INTEGER 1
WORD LENGTH. 5

pNoNoNe]

M=1
10 M2 = M
M = ITWO*M2
IF (M .GT. M2) GO TO 10
HALFM = M2

COMPUTE MULTIPLIER AND INCREMENT FOR
LINEAR CONGRUENTIAL METHOD

o NoNoNe]

IA = 8*IDINT(HALFM*DATAN(1.D0O)/8.D0) + 5
IC = 2+*IDINT(HALFM*(0.5D0-DSQRT(3.D0)/6.D0)) + 1
MIC = (M2 - IC) + M2

S IS THE SCALE FACTOR FOR CONVERTING TO
FLOATING POINT.

S = 0.5/HALFM

COMPUTE NEXT RANDOM NUMBER
20 IY = 1Y*IA

Q oo aoon
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|
: c THE FOLLOWING STATEMENT IS FOR COMPUTERS WHICH -
- c DO NOT ALLOW INTEGER OVERFLOW ON ADDITION :
- Cc =
‘N IF (IY .GT. MIC) IY = (IY - M2) - M2 o4
L c =
. IY = IY + IC o
. c >
: c THE FOLLOWING STATEMENT IS FOR COMPUTERS WHERE g
c THE WORD LENGTH FOR ADDITION IS GREATER THAN 3
| - c FOR MULTIPLICATION 3
o Cc ]
o IF (IY/2 .GT. M2) IY = (IY - M2) - M2 =
< (o} oY%
D c THE FOLLOWING STATEMENT IS FOR COMPUTERS WHERE P
: c INTEGER OVERFLOW AFFECTS THE SIGN BIT ;i
] c ;
.~ IF (IY .LT. 0) IY = (IY + M2) + M2 -
V. - URAND = FLOAT(IY)*S .
3 RETURN
' '_\_, END :
[}
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* PROGRAM " BLNMDE" *
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THIS PROGRAM GENERATE THE MDF BILINEAR
HYSTERETIC STRUCTURE RESPONSE

aaaoaaoaoaaoaoaaaooaaoaaoaaoaoaaaoaaoaan

N : NUMBER OF DEGREE OF FREEDOM
NT : NUMBER OF TIME STEP -l
DT : TIME INCREMENT =
| W MC(I) : MASS FOR EACH DEGREE OF FREEDOM s
 JeS CC(I) : DAMPING FOR EACH DEGREE OF FREEDOM o
: KC(I) : STIFFNESS FOR THE SYSTEMS
AR AC(I) : YIELD STIFFNESS
SN 20I(I): INITIAL DISPLACEMENT
ZOF(1): FINAL DISPLACEMENT
| _ 21I(I): INITIAL VELOCITY »
N Z21F(1): FINAL VELOCITY N
AR 22F(1): FINAL VELOCITY -
> PSF(I): FINAL PERMANENT DISPLACEMENT X
L= CALL OPSYS('ALLOC', 'MDF1',10) -
CALL OPSYS('ALLOC', 'MDF2',20)
o CALL OPSYS('ALLOC', 'RH1',23)
T CALL OPSYS('ALLOC', 'RH2',25)
. CALL OPSYS('ALLOC', 'RH3',40)
b CALL OPSYS('ALLOC', 'RH4',46)
¥ DIMENSION DUMV1(2),DUMV2(2),DUMM1(2,2),DUMM2(2,2)
2! DIMENSION DLO(2),DL1(2),RU(2),RL(2),PSI(2),YD(2)
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DIMENSION CC(2),AC(2),Q(2),PSF(2),FF(1024),RN(1024)
DIMENSION CM(2,2),RV(2),D20(2),D21(2),D22(2)
DIMENSION 20I(2),21I(2),221(2),F(1024,2),20F(2)
DIMENSION Al(2,2),A2(2,2),A3(2,2),A4(2),A5(2)
DIMENSION AKMC(2),AMC(2),AKC(2),AMM(2,2),AKM(2,2) -
DIMENSION Al1(2,2),A22(2),2ZM(2),2S5(2),2N(2),2T(2) -
DIMENSION AllI(2,2),ENED1(1024),ENED2(1024),DN(1024)

DIMENSION Z1F(2),22F(2),FN(1024)

INOISE=1 MEANS NOISE INCLUDED [}

ann

INOISE=0
=2
NT=1024
DT=0.05
AMC(1)=1.0
AMC(2)=1.0
CC(1)=1.256
cC(2)=1.256
AKC(1)=39.48
AKC(2)=39.48
AC(1)=0.0
AC(2)=0.0
20I1(1)=0.0
Z01(2)=0.0
21I1(1)=0.0
21I(2)=0.0
YD(1)=1.2
¥YD(2)=1.0
N1=NT-1
ENED1(1)=0.0
ENED2(1)=0.0

.

s
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READ THE FORCE VECTOR
FN(I):INPUT NOISE
RN(I):RESPONSE NOISE

Qaaoaaoaaon

READ(23,33)(FF(1),FN(I),I=1,NT)

READ(25,35)(RN(1),I=1,
READ(46,35)(DN(I),1I=1,

33 FORMAT(2E12.4)

35 FORMAT(E12.4) -
DO 30 I=1,NT
F(I,1)=0.0

30 F(I,2)=FF(I) =

FORM THE MM AND CM MATRICES

(e NoNo]

DO 1111 I=1,N R
DO 1111 J=1,N -
AKM(1,J)=0. pi
AMM(I,J)=0. :
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1111

1112

1113

il11s

1130

CM(I,J)=0.
FORM MASS MATRIX

DO 1112 I=1,N
AMM(I,I)=AMC(I)

FORM DAMPING MATRIX

DO 1113 I=1,N

IP=1+1

CM(1,I)=CC(I)
IF(I.EQ.N)GO TO 1113
CM(I,I)=CM(I,I)+CC(IP)
CM(1,IP)=-CC(IP)
CM(IP,I)=-CC(IP)
CONTINUE

FORM CONSTANTS VECTORS AND MATRICES
FOR ITERATION.

CD1=DT/2.0

CD2=6.0/DT

CD3=6.0/(DT**2)

CD4=3.0/DT

D1=DT/2.0

D2=DT*DT/6.0

D3=DT*DT/2.0

DO 1119 I=1,N
A4(1)=AC(I)/(AKC(I)-AC(I))
A5(1)=(AKC(I)-AC(I))/AKC(I)
DO 1119 J=1,N
Al(I,J)=AMM(I,J)+D1*CM(I,J)
A2(1,J)=DT*CM(I,J)

CONTINUE

INVERSE THE MASS MATRIX
CALL MATINV(AMM,A3,N)
INITIATE KM AND RESPONSE VECTORS

DO 1130 I=1,N
IP=I+1

AKM(I,I)=AKC(I)
IF(I.EQ.2) GO TO 1130
AKM(I,I)=AKM(I,I)+AKC(IP)
AKM(I,1IP)=~AKC(IP)
AKM(IP,1)=-AKC(IP)
CONTINUE

SET INITIAL CONDTTIONS
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. DO 1132 I=1,N
- ZOI(1)=0.
d B Z1I1(1)=0.
- 1132 PSI(1)=0.
a DO 1133 I=1,N
- 1133 DUMV1(I)=F(1,1)

=1
N~

FIND INITIAL ACCELERATION 221

RPROT | SR

CALL MVM(A3,DUMV1, 22I,N)
WRITE INITIAL VALUES

WRITE(6,3) i

.
R L0,
Lot h

OO0 oo

" T=0.0
' WRITE(40,100) FF(1)
- WRITE(10,14)(20I(I),I=1,N)
WRITE(20,14)(PSI(I),I=1,N)

2,

AR , S
A AL ADIS

1
¢ U

c
y Cc START THE RESPONSE COMPUTATION a
c

- DO 8999 IND=1,N1 1
R T=IND*DT

COMPUTE DZ2

QaaQo

I DO 1121 I=1,N
) DO 1121 J=1,N
1121 DUMM1(I,J)=A1(I1,J)+D2*AKM(I,J)
CALL MATINV(DUMM1,DUMM2,N)
DO 1212 I=1,N
DO 1212 J=1,N
n 1212 DUMM1(1,J)=A2(I,J)+D3*AKM(I,J)
oo CALL MVM(DUMM1,221I,DUMV1,N)
o DO 1213 I=1,N
DO 1213 J=1,N
1213 DUMM1(I,J)=DT*AKM(I,J)
CALL MVM(DUMM1,21I,DUMV2,N)
- DO 1214 I=1,N
S 1214 DUMV1(1)=-(DUMV1(I)+DUMV2(I))+
+(F(IND+1,I)-F(IND,I))
CALL MVM(DUMM2,DUMV1,D22,N)

s A i

S TR

- c
Sy (o] COMPUTE DZ1 AND D20
c

o DO 1221 I=1,N
o DZ1(1)=DT*22I(I)+D22(1)*D1
o 1221 DZ0(1)=D3*22I(1)+D2+DZ2(I)+DT*21I(I)

2 c
. c COMPUTE Z1F AND ZOF
‘ c




100

110

120
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1231

Qaon

1241
1245

1251

1258

1260
1261

1265

1267
1268
1271
1272

.............
........
..........

DO 100 I=1,N

DO 100 J=1,N
A11(I,J)=AKM(I,J)+CD3*AMM(I,J)+CD4*CM(I,J)
DO 110 I=1,N
ZM(1)=CD2*21I(1)+3.0%*22I(I)
2S(1)=3.0*Z1I(1)+CD1*22I(1I)

CONTINUE

CALL MVM(AMM, ZM, 2N, N)

CALL MVM(CM, 2S, ZT,N)

DO 120 I=1,N
A22(1)=F(IND+1,I)-F(IND,I)+2N(I)+2ZT(I)
CALL MATINV(All,AllI,N)

CALL MVM(A1llI,A22,DZ0,N)

DO 140 I=1,N
DZ1(1)=CD4*DZ0(1)-3.0*21I(I1)-CD1*22I(1I)
DO 1231 I=1,N

Z1F(1)=211I(1)+D21(I)
ZOF(1)=201I(I)+D20(I)

COMPUTE THE END OF STEP KM MATRIX

DLO(1)=20F(1)

DL1(1)=21F(1)

IF(N.EQ.1)GO TO 1245

DO 1241 I=2,N
DLO(I)=Z0F(I)-Z0F(1-1)
DL1(I)=21F(I)-Z1F(I-1)
CONTINUE

DO 1251 I=1,N
RU(I)=AKC(I)*(A&(I)*PSI(I)+¥YD(I))
RL(I)=AKC(I)*(A4(I)*PSI(I)-YD(I))
DO 1272 I=1,N
QCC=AKC(I)*(DLO(I)-PSI(I))
IF(QCC.GT.RU(I))GO TO 1258
IF(QCC.LT.RL(I))GO TO 1265
AKMC (1)=AKC(I)
PSF(I)=PSI(I)

GO TO 1271
IF(DL1(I).LE.O.)GO TO 1260
AKMC(I)=AC(I)

GO TO 1261

AKMC (I)=AKC(I)
PSF(I)=A5(I)*(DLO(I)-YD(I))
GO TO 1271
IF(DL1(I).GE.O.)GO TO 1267
AKMC(I)=AC(I)

GO TO 1268

AKMC(I)=AKC(I)
PSF(I)=A5(1)*(DLO(I)+YD(I))
Q(I)=AKC(I)*(DLO(I)-PSF(I))
CONTINUE

Do 1281 J=1,N
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Jp=J+1

AKM(J, J)=AKMC(J) 2
IF(J.EQ.N)GO TO 1281 N
AKM(J, J)=RAKM(J,J)+AKMC(JP) )
AKM(J, JP)=-AKMC(JP) 3

AKM(JP, J)=-AKMC(JP) g
1281 CONTINUE -3

COMPUTE THE RESTORING FORCE VECTOR

o NoNe]

DO 1291 I=1,N

RV(I)=Q(I)

IF(I.LT.N)RV(I)=RV(I)-Q(I+1)
1291 CONTINUE

COMPUTE 2Z2F

aQa

CALL MVM(CM, Z1F,DUMV1,N)
DO 1311 I=1,N

1311 DUMV2(I)=F(IND+1l,I)-DUMV1(I)-RV(I)
CALL MVM(A3,DUMVZ2, Z2F,N)

PRINT THE RESULTS

o e mr
RIS SOORRRRAN - T

(oNo NN

WRITE(6,3)
IF(INOISE.NE.1) GO TO 555 ‘
ZNOISE=ZOF (1)+RN(IND+1) 3
YNOISE=ZOF (2 ) +DN( IND+1) o
WRITE (10, 14)ZNOISE, YNOISE
YF=FF ( IND+1)+EN(IND+1) R
WRITE (40, 100)YF ;
GO TO 558 '

555 WRITE(10,14)ZO0F(1),Z0F(2) ]
WRITE(40, 100)F(IND+1,2) -

558 WRITE(20,14) (PSF(I),I=1,N) '
IP=IND+1
DIS=ZO0F(2)-2Z0F(1)

REV=Z1F(2)-21F(1)

REACC=2Z2F (2)-22F(1)
ENED1(IP)=21F(1)*(CC(1)*Z1F(1)+AKC(1)*ZOF(1))
ENED2 ( IP )=REV* (CC(2 ) *REV+AKC (2 ) *DIS)

TN

INITIATE THE NEXT COMPUTATION CYCLE

Qoo

DO 1341 I=1,N
Z0I(I)=20F(1)
Z11(1)=21F(1)
221(1)=22F(1I)
PSI(I)=PSF(I)
1341 CONTINUE
8999 CONTINUE
CALL SIMP(ENED1,ENER1,DT,NT)
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CALL SIMP(ENEDZ,ENER2,DT,NT)
ENER=ENER1+ENER2
WRITE(6,17) ENER1,ENERZ,ENER
3 FORMAT(/)
14 FORMAT(2E12.4)
17 FORMAT(3El2.4)
100 FORMAT(1El2.4)
STOP
END

FIND THE AREA UNDER THE CURVE

SUBROUTINE SIMP(X,E,D,N)
DIMENSION X(1024)
N2=N/2-1
E=X(1)

DO 1 I=1,N2
IA=2+*1
IB=IA+1
E=E+4.0*X(IA)
E=E+2.0*X(IB)

1 CONTINUE
N3=N-1
E=E+0.5*X(N3)+1.5%X(N)
E=D*E/3.0
RETURN
END

SUBROUTINE MULTIPLICATION

SUBROUTINE MVM(A;B,C,N)
DIMENSION A(2,2),B(2),C(2)
DO 1 I=1,N
C(I)=0.

DO 1 J=1,N
C(I)=A(I,J)*B(J)+C(I)

1 CONTINUE
RETURN
END
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* PROGRAM "TIMID" *
kkdkkhhkhhb ok kb hhhhddhdhbdddbhddddhhhds
MAIN PROGRAM FOR LEAST-SQUARE STRUCTURE
IDENTIFICATION

EXTERNAL SUBS

EXTERNAL MULTI

DIMENSION C(720,2),D(10,10),AT(2,720),CM(2,2)
DIMENSION F(720,1),AA(2,1),CA(720,1),ERR(720,1)
DIMENSION CMS(2,2),DIA(2,1),CMS1(2,2),UM(2,2)
DIMENSION CM1(2,2),CT(2,720),ERRT(1,720),AJN(2,2)
DOUBLE PRECISION AT,CM,CT,AA,C,F,CA,ERR, ERRT
DOUBLE PRECISION AJN,CM1,CMS,DIA,CMS1,UM

CALL OPSYS('ALLOC','ID1l',33)

DATA FILE NEED TO CHANGE ACCORDING THE
SYSTEM USED

N NUMBER OF POINTS FOR THE IDETIFICATION
IM NUMBER OF COLUM

CALL OPSYS('ALLOC','ID1',34)
READ(S5,*) N,M, IM

DO 10 I=1,N

READ(33,15) (C(I,J), J=1,IM)
po 11 I=1,N

READ(34,16) (F(I,1))

CALL TRAN(C,N, IM,AT)

CALL MULTI(AT,IM,N,C, IM,CMS1)
DO 8 I=1,IM

DO 8 J=1,IM

CM(I,J)=CMS1(I,J)

WRITE(6,30)

DO 3 I=1,IM

WRITE(6,4) (CMS1(I,J),J=1,IM)
CALL INVER(CMS1,IM,D,M,DETER)
CALL MULTI(CM, IM, IM,CMS1, IM, UM)
WRITE(6,33)

DO 5 I=1,IM

WRITE(6,7) (UM(I,J),J=1,IM)
CALL MULTI(CMS1,IM, IM,AT,N,CT)
CALL MULTI(CT, IM,N,F,1,AA)
WRITE(6,34)

DO 22 I=1,IM

WRITE(6,12) AA(I,1)

CALL MULTI(C,N, IM,AA,1,CA)
CALL SUBS(F,N,1,CA,ERR)

CALL TRAN(ERR,N,1,ERRT)

CALL MULTI(ERRT,1,N,ERR,1,VAR)
VAR=VAR/ (N-IM)

DEV=SQRT (VAR)

CoeTAT TN Ty TE,OY.
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S WRITE(6,17)
o WRITE(6,37) DEV

VO 4 FORMAT(2E16.6)
7 FORMAT(2E16.6)
12 FORMAT(E16.6)
15 FORMAT(2E12.4)
16 FORMAT(1E16.6)
17 FORMAT (5X,'THE DEVIATION IS',/)
20 FORMAT(6E12.4)
24 FORMAT(6E12.4)
30 FORMAT(5X, 'MATRIX Z',/)
31 FORMAT(5X,'INVERSE MATRIX',/)
32 FORMAT(5X,' INVERSE MATRIX IMPROVED',/)
33 FORMAT(5X,'UNIT MATRIX FOR CHECKING',/)
34 FORMAT(5X,'INDENTIFIED PARAMETERS',/)
35 FORMAT(5X, 'MATRIX CT',/)
37 FORMAT(E18.6)
STOP
END

THIS SUBROUTINE IS FOR MATRIX INVERSION

Q00

. SUBROUTINE INVER(A,N,B,M,DET)

e DOUBLE PRECISION A(2,2),B(2,2),IPVOT(2), INDEX(2,10)
> DOUBLE PRECISION T,PIVOT(2)

COMMON IPVOT, INDEX,PIVOT

EQUIVALENCE (IROW,JROW), (ICOL, JCOL)

c
. C INITIALIZATION ,
c
DET=1.0D0
DO 7 J=1,N
, 7 IPVOT(J)=0
. DO 135 I=1,N

SEARCH FOR PIVOT ELEMENT

QaQQ

- T=0.0DO
DO 9 J=1,N
- IF(IPVOT(J)-1) 13,9,13
R 13 DO 23 K=1,N
- IF(IPVOT(K)-1)43,23,81
43 IF(DABS(T)-DABS(A(J,K))) 83,23,23
83 IROW=J
1COL=K
T=A(J,K)
= 23 CONTINUE
o 9 CONTINUE
. IPVOT(ICOL)=IPVOT(ICOL)+1

o

PUT PIVOT ELEMENT ON DIAGONAL
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73

12
33

109

Qoo

205

66
52

QaQa

347
21

89

18
68
135

a0

222

19

549
81

.....

R

“

IF(IROW-ICOL) 73, 109,73
DET=-DET

DO 12 L=1,N
T=A(IROW,L)
A(IROW,L)=A(ICOL,L)
A(ICOL,L)=T

IF(M) 109,109,33

DO 2 L=1,M
T=B(IROW, L)
B(IROW,L)=B(ICOL,L)
B(ICOL,L)=T
INDEX(I,1)=IROW
INDEX(I,2)=1COL
PIVOT(I)=A(ICOL, ICOL)
DET=DET*PIVOT(I)

DIVIT PIVOT ROW BY PIVOT ELEMENT

A(ICOL,ICOL)=1.

DO 205 L=1,N
A(ICOL,L)=A(ICOL,L)/PIVOT(I)
IF(M) 347,347,66

DO 52 L=1,M
B(ICOL,L)=B(ICOL,L)/PIVOT(I)

REDUCE NON-PIVOT ROW

DO 135 LI=1,N

IF(LI-ICOL) 21,135,21 g
T=A(LI, ICOL)

A(LI, ICOL)=0.0DO

DO 89 L=1,N

A(LI,L)=A(LI,L)-A(ICOL,L)*T

IF(M) 135,135,18

DO 68 L=1,M

B(LI,L)=B(LI,L)-B(ICOL,L)*T

CONTINUE

INTERCHANGE COLUMNS

DO 3 I=1,N

L=N-I+1
IF(INDEX(L,1)-INDEX(L,2)) 19,3,19
JROW=INDEX (L, 1)
JCOL=INDEX(L,2)

DO 549 K=1,N

T=A(K, JROW)

A(K, JROW)=A (K, JCOL)
A(K,JCOL)=T

CONT INUE

CONTINUE

RETURN
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' 3 c THIS SUBROUTINE IS FOR MATRIX MULTIPLICATION
{ C

N SUBROUTINE MULTI(A,N,M,B,L,C)

N DIMENSION A(N,M),B(M,L),C(N,L)

R DOUBLE PRECISION A,B,C

-:3 - DO 5 I=1,N

x DO 5 J=1,L

- c(1,J)=0.0D0

L DO 5 K=1,M

S 5 C(I,J)=C(I,J)+A(I,K)*B(K,J)

A RETURN

':0 ':': END

PRRs SUBROUTINE MULTIA(TA,N,M,TB,L,TC)

| DIMENSION TA(N,M),TB(M,L),TC(N,L)

35 DOUBLE PRECISION TA,TB,TC 4
L DO 15 I=1,N ¥
N DO 15 J=1,L g
Y- TC(I,J)=0.0D0 ]
N S DO 15 K=1,M 3
: 15 TC(I,J)=TC(I,J)+TA(I,K)*TB(K,J) i
% RETURN :
5i END .
o c :
7 c THIS SUBROUTINE IS FOR MATRIX TRANSFORMATION !
' c

| SUBROUTINE TRAN(A,N, IM,AT)

S DIMENSION A(N,IM),AT(IM,N)

.- DOUBLE PRECISION A,AT

- DO 3 I=1,N

DO 3 J=1,1IM

SUBROUTINE SET(A, IM,B,DIA)

: 3 AT(J,I)=A(1,J)
I W RETURN
~ END
N c
f~ - c THIS SUBROUTINE IS FOR MATRIX SUBSTRACTION
NN c
. T SUBROUTINE SUBS(A,N, IN,B,C)
i DOUBLE PRECISION A(N, IN),B(N, IN),C(N, IN) L
oS DO 101 I=1,N ;
S DO 101 J=1,IN N
Y 101 Cc(I,J)=A(I1,J)-B(I,J) 3
J - RETURN N
4 - END :
: c .
. 1
.

DIMENSION A(IM,IM),B(IM,IM),DIA(IM,1)

S DOUBLE PRECISION A,B,DIA
o DO 3 J=1,IM
4 L DO 3 I=1,IM

-l L]
1 - SN TS - M




SR B(1,J)=A(1,J)/A(J,J)
N DIA(J,1)=A(J,J)

e 3 CONTINUE

1' B RETURN

o END

Cc
. Cc
- - C
]

THIS SUBROUTINE IS FOR IMPROVING THE ACCURACY
OF THE MATRIX INVERSION.

SUBROUTINE RIVISE(A,Al, IM,AIN)

DOUBLE PRECISION A(2,2),Al(2,2).AIN(2,2),AJN(2,2)
DOUBLE PRECISION UN(2,2),UN1(2,2),SAl(2,2)
DOUBLE PRECISION ERR(2,2),AAl(2,2)

UN1(1,1)=1.0D0

UN1(2,2)=1.0D0

UN1(3,3)=1.0D0

UN1(4,4)=1.0D0

UN1(1,2)=0.0DO0 ~
UN1(1,3)=0.0D0 1
UN1(1,4)=0.0DO 4
UN1(2,1)=0.0D0
UN1(2,3)=0.0D0
UN1(2,4)=0.0D0
UN1(3,1)=0.0D0
UN1(3,2)=0.0D0
UN1(3,4)=0.0D0
UN1(4,1)=0.0D0
UN1(4,3)=0.0D0

DO 30 I=1,IM

DO 30 J=1,IM
UN(I,J)=UN1(I,J)*2.0DO
ICOUNT=1 ‘
CALL MULTI(A,IM,IM,Al,IM,AAl) b
CALL SUBS(UN, IM, IM,AAl, SAl)

CALL MULTI (A1, IM, IM, SAl, IM,AIN)

CALL MULTI(A,IM,IM,AIN, IM,AJN)
ERRSM=0 . 0DO

DO 5 I=1,IM

DO 5 J=1,IM

ERR(I,J)=AJN(I,J)-UN1(I,J)
ERRSM=ERRSM+DABS (ERR(I, J))

CONTINUE

IF(ERRSM.LT.1.0D-7) GO TO 20
1COUNT=1COUNT+1

DO 15 I=1,IM

DO 15 J=1,IM

A1(I,J)=AIN(I,J)

GO TO 2

RETURN

END

SUBROUTINE INVERS(B,N,A)

DOUBLE PRECISION A(N,N),B(N,N),C(18,18)

P
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i DOUBLE PRECISION AMAX,TEMP,PIVOT
> DIMENSION INDEX(4,2)
IF(N.GT.40) WRITE(6,101) |
B 101 FORMAT(20X, 'MATRIX INVERSION IS LIMITED TO A Y
- +40 X 40 MATRIX') 8
IF(N.GT.40) GO TO 134 R
- 103 FORMAT(/,' MATRIX INVERSION' //) 5
- 104 FORMAT(' THE MATRIX (XT*X)',/) ,
B 106 FORMAT(' ROW', I3,1X,1P4E16.7/(8X,1P4E16.7)) 3
- 128 FORMAT(' THE INVERSE OF MATRIX (XT*X)',/) M
; 131 FORMAT(' THE UNIT MATRIX') b
133 FORMAT(' ZERO PIVOT')
DO 90 I=1,N
DO 90 J=1,N
R A(I,J)=B{I,J)

90 CONTINUE
WRITE(6,103)
WRITE(6,104)
DO 105 I=1,N
105 WRITE(6,106) I,(A(I,J),J=1,N)
o DO 107 I=1,N
) DO 107 J=1,N
107 B(I,J)=A(I,J)
- DO 108 I=1,N
T 108 INDEX(I,1)=0
1I=0
. 109 =-1.0D0
] DO 110 I=1,N
oo IF(INDEX(I,1)) 110,111,110
111 DO 112 J=1,N
IF(INDEX(J,1)) 112,113,112
113 TEMP=DABS(A(I,J))
) IF(TEMP-AMAX) 112,112,114
n 114 IROW=I

P I1COL=J
AMAX=TEMP

112 CONTINUE

110 CONTINUE
IF(AMAX) 225,115,116

116 INDEX(ICOL,1)=IROW
IF(IROW-ICOL) 119,118,119

119 DO 120 J=1,N
TEMP=A( IROW, J)
A(IROW,J)=A(1ICOL,J)

120 A(ICOL,J)=TEMP =
II=II+1 L
INDEX(II,2)=ICOL ,

118 PIVOT=A(ICOL, ICOL)

A(ICOL,ICOL)=1.0D0

PIVOT=1.0DO/PIVOT ‘

DO 121 J=1,N :
121 A(ICOL,J)=A(ICOL,J)*PIVOT ]

e
%
7
1
N
Q
H

-
-

QR

'''''''''' . . . . . . N . e . - . - o L.
S =S S T S S Y S S S S T T S o S N R D St L SUR SO0



PAR il R e g 3 . (o et U R aen S St Sie i i Cami et i nml i st At APl it i A e “Si

160

Ft B DO 122 I=1,N :
o IF(I-1COL) 123,122,123
123 TEMP=A(I,1COL)
N A(I,ICOL)=0.0D0
- DO 124 J=1,N
124 A(I,J)=A(1,J)-A(ICOL,J)*TEMP
= 122 CONTINUE

~ GO To 109
125 ICOL=INDEX(1II,2)
- IROW=INDEX(ICOL, 1)

- DO 126 I=1,N

h TEMP=A (I, IROW)

- A(1,IROW)=A(I,ICOL)

_ 126 A(I,ICOL)=TEMP

- I1=1I-1

225 IF(II) 125,127,125

127 WRITE(6,128)
DO 129 I=1,N

129 WRITE(6,106) I,(A(I,J),J=1,N)
DO 130 I=1,N -
DO 130 J=1,N *
C(I,J)=0.0D0 g
DO 130 K=1,N %

130 C(I,J)=C(I,J)+B(I,K)*A(K,J) .
WRITE(6,131)
DO 132 I=1,N

132 WRITE(6,106) I,(C(I,J),J=1,N)

308

B S 4]
l.

GO TO 134
115 WRITE(6,133)

. 134 RETURN
: END
: c

C khkkhkhkdhkhktktdddhddhbhhhhhhkthtttrrrdddbddd
n c * PROGRAM " ENER2" *
‘TN C khhkhkhkhhkhkkhkhhhhhtrthdddhrhhhrrdrhhkrhdrrhdd

c THIS PROGRAM COMPUTES ENERGY DISSIPATED IN A

c 2ND ORDER SYSTEM , AO,Al COEFF GENERATED

c IN IDENTIFICATION PROGRAM

o] DT DELTA T
- o] N NO OF PTS B
- c N
. DIMENSION F(1024),XINT(1024)
) REAL K1,K2,L1,L2 -
e CALL OPSYS('ALLOC', 'RH1',55) ;j
= CALL oPSYS('ALLoOC','ID1l',k57)

READ(5, *)N !i
. READ(S5, *)DT,A0,Al,AMS 7
X READ(55,90)(F(I),I=1,N) 5
XINT(1)=0.0 ol

. NM=N-1 g
P Cl=-A1/AMS Y
-- C2=-A0/AMS X

:
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c
c
Cc
c
c
Cc
c
c
c
c
c

999

12
90
91

<

1€1

C3=1.0/AMS

Y0=0.0

20=0.0

DO 999 I=1,NM

T=DT*(1-1)

K1=DT*Z0
L1=DT*(C1*20+C2*YO+C3*F(I))
K2=DT* (Z0+L1)

L2=DT* (C1* (Z0+L1)+C2* (YO+K1)+C3*F(I+1))
Y1=Y0+0.5%* (K1+K2)
21=20+0.5* (L1+L2)

IP=I+1

XINT(IP)=Z1%*2

Yo=Y1

Z0=21

WRITE(57,92)T, YO

CONTINUE

CALL SIMP(XINT,ENED,DT,N)
ENED=A1*ENED+0.5*A0*Y1#*#%2 .
WRITE(6, 12 )ENED
FORMAT (5X, 7THENED = ,E12.4)
FORMAT(E12.4)
FORMAT(1E12.4)

FORMAT (2E12.4)

STOP

END

SUBROUTINE SIMP(X,E,D,N) .
DIMENSION X(1024)

N2=N/2-1

E=X(1)

DO 1 I=1,N2

IA=2+1

IB=IA+1

E=E+4.0*X(IA)
E=E+2.0*X(IB)

CONT INUE

N3=N-1
E=E+0.5*X(N3)+1.5*X(N)
E=D*E/3.0

RETURN

END

e e
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* PROGRAM " ENER3" *
khkkdkkhkhkhhrdhkhhhhkdrdhhdbhhhrthhkhhbthhhhthhbhdd
THIS PROGRAM USES THE INCREMENTAL EQUATIONS
TO COMPUTE THE ENERGY DISSIPATED

IN A 3RD ORDER SYSTEM

N NO OF PTS

DT DELTA T

AO,Al,A2 COEFF FROM ID PROGRAM

.......
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—
(o))
(AN ]
J .

AO COMPARE TO STIFFNESS
ENED TOTAL ENERGY DISSIPATED
ENED1 SPRING ENERGY DISSIPATED

QOO0

“~ s
m

NI CALL OPSYS('ALLOC','ID2',21)
- DIMENSION F(1024),FD(1024),XINT(1024)
o DIMENSION ESP(1024),XINT1(1024)
N READ(5, *)N 5
READ(5, *)DT,A0,Al,A2,AMS ;
- CALL OPSYS('ALLOC', 'RH1',55) 3
P 111 READ(55,91)(F(I),FD(I),I=1,N) -
S c CONVERT R
N AO=A0/(A2*AMS) -
- Al=Al/(A2*AMS) -
A B1=1.0/(A2*AMS) :
‘B2=1.0/AMS
L A2=1.0/A2
0 c CONSTANTS
s RO=24.0/DT**3
SR R1=4.0
s R2=12.0/DT
R3=24.0/DT**2
S0=12.0/DT**2
L S1=DT
L $2=6.0
s $3=12.0/DT
o U0=4.0/DT
I U1=DT**2/6.0
X U2=DT
\ U3=4.0
Q1=24.0/DT**3+12.0*A2/DT**2+4.0*A1/DT+AQ
Q2=4.0+A2*DT Al1*DT**2/6.0
Q3=12.0/DT+6.0*A2+A1*DT
n Q4=24.0/DT**2+12.0*A2/DT+4.0*Al
.ot Y0=0.0
.. Y1=0.0
S ¥2=0.0
S Y3=Bl*F(1)+B2*FD(1)
) XINT(1)=0.0
- ESP(1)=0.0
S NM=N-1
R DO 999 I=1,NM
- T=DT*(I-1)

-4 VIPRIC AN

2 DF=Bl*(F(I+1)-F(I))+B2*(FD(I+1)-FD(I))

SN DZ0=(DF+Q2*Y3+Q3*Y2+04*Y1)/Q1

e DZ1=U0*DZ20-Ul1*Y3-U2*Y2-U3+*Y1
- DZ2=S0*DZ0-S1*Y3-S2+Y2-S3*Y1l

YO=Y0+DZ0

Y1=Y1+DZ1

o Y2=Y2+D22

oo Y3=Bl*F(I+1)+B2*FD(I+1)-A2*Y2-Al*Y1-A0*YO
L IP=1+1

-~

h
1
li
S
B
A
A
K
4
u
Xl
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999

12
0]
91

XINT(IP)=Y1*(F(IP)-AMS*Y2)
WRITE(21,91)T, YO
CONTINUE

CALL SIMP(XINT,ENED,DT,N)
WRITE(6, 12 )ENED
FORMAT(5X, 7HENED = ,E12.4)
FORMAT (E12.5)

FORMAT (2E12. 4)

STOP

END

SUBROUTINE SIMP(X,E,D,N)
DIMENSION X(1024)
N2=N/2-1

=X(1)
DO 1 I=1,N2

IA=2+*1

IB=IA+1

E=E+4.0*X(IA)
E=E+2.0*X(IB)

CONTINUE
N3=N-1
E=E+0.5*X(N3)+1.5*X(N)
E=D*E/3.0

RETURN

END

R R R R R I I I I IIIIIIT
* PROGRAM " FREQID" *

khkkhkkkkkhhhhhhkhkhkkdhhhkhdhhkddhhhkhkdbrhktdthdhddd

FREQUENCY DOMAIN SYSTEM IDENTIFICATION

REAL DD(1024),F(1024),W(1024),COE(4),QT(20)
DIMENSION S(1024), INDEX(1024),0Q0(1024),X2(22,1)
DIMENSION X1(22,2),XT1(2,22),XP(2,2),XPI(2,2)
DIMENSION XTT(2,22),B(2,1)

COMPLEX FT(1024),DDF(1024)

CALL OPSYS('ALLOC','FD1',10)

CALL OPSYS('ALLOC','ID1l',8)

COMMON /ARRAY/W,QQ, S, INDEX

EXTERNAL SPLINE

EXTERNAL QF

EXTERNAL MATINV

WHEN INDE=1 SHOWS THE PROGRAM WILL GO TO
THE THIRD ORDER SYSTEM

INDE=1
ID=0
KDEX=0
MP=2
M=10

-

-



oNO NP

15

(oNo N

Qa0

20

oNoNe

24

-
{
e NoNoNeNoKel

L 33

: 55
F 45

L‘, B P U P DR P W U PG « W O WU I SUy Yiy SOy UG gy S W WU W s v a - o " a

164

N=1024

"NT=N/2

NTP=NT+1
DT=0.05

Cc2=1.0
PI=3.1415926535
NS=N/2

CA=PI/NS

GET THE INPUT FROM THE FILE AND FFT THE INPUT

READ(10,15) (F(I),DD(I),I=1,N)
FORMAT (2E12. 4)
IF(KDEX.NE.1) GO TO 13

SMOOTH THE FUNCTION

DO 9 I=1,NS

IM=N-I+1
CMULT=0.5%(1.0-COS((I-1)*CA))
F(IM)=CMULT*F (IM)

DD ( IM)=CMULT*DD ( IM)

CONT INUE

TT=N*DT

DO THE FOURIER TRANSFORM

DO 20 I=1,N
FT(1)=CMPLX(F(I),0.0)*TT
DDF(I)=CMPLX(DD(I),0.0)*TT
CONTINUE

CALL FFT1(FT,M,N,-1.)

CALL FFT1(DDF,M,N,-1.0)

CALCULATE THE DF AND FREQUENCY

DF=2.0*PI/TT

DO 24 I=1,N
W(I)=(I-1)*DF
CONTINUE

IF(ID.EQ.1) GO TO 33
GO TO 45

IDENTIFICATION PROCESS
SECOND ORDER SYSTEM

CHANGE F.T. OF ACCELERATION TO F.T. OF DISPLACEMENT

DO 55 I=2,N
DDF(1)=-DDF(I)/(W(I)**2)
CONTINUE

DO 50 I=40,60
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50

60

67
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FF=CABS(FT(I))
ZF=CABS(DDF(I))
QQ(I)=FF**2/(ZF**2)
WRITE(8,88)W(I),00(I)
CONTINUE

GO TO 200

FIND THE MINIMUN OF THE QQ(I) AND IT'S FREQUENCY

SMAL=QQ(30)
KN=30
DO 60 I=31,70
IF(SMAL.LE.QQ(I)) GO TO 60
SMAL=QQ(1I)
QMIN=QQ(I)
KN=1
CONTINUE
=KN*DF

CALCULATE THE STIFFNESS

CO=C2 *WM* *2
WRITE (6, * )KN, WM, CO, QMIN

USE FIT TO FIND THE REAL MINIMUM

AS=0.9*WM
AF=1.1%WM
1S=AS/DF
IF=AF/DF
1J=1S-1
ITT=(IF-1S)+1
DO 67 I=1,ITT
IK=I+1J

QT (I)=QQ(IK)
CONT INUE

POLYNOMIAL FITTING BY LEAST SQUARE METHOD

QT :INPUT VALLES

ITT: TOTAL PTS OF QT

AS:START FREQUENCY

AF:FIANL FREQUENCY
COE(I):COEFFICIENTS OF POLYNOMIAL

CALL FIT1(QT,3,ITT,AS,AF,COE)
=-COE(2)/(2.0*COE(3))

CO=C2*WM* *2

WRITE(6, *)ITT, WM, CO

SET THE RANGE OF FREQUENCY AND FIT THE
DATA BY CUBIC SPLINE

FOURY - TR Y WS
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70

80

100

QA=0.9

0B=1.1

WA=QA *WM

WB=QB*WM

IF(INDE.EQ.1) GO TO 80

CALL SPCOEF(NT,W,QQ,S, INDEX)
DO 70 I=1,NT

QQ(I)=-00(1)

CONTINUE

DO THE INTEGRATION AND CALCULATE THE DAMPING

CALL SIMP(QF,WA,WB,1.0E-5,ANS,ERROR,AREA, IFLAG)
QIN=5.*ANS/(WM**7)

Q3=(QB**3 )~ (QA**3)

Q5=(QB**5) - (QA**5)

Q7=(QB**7)-(QA**7)
OP=(-5./3.)*03+2.*%Q5-(5./7.)*Q7
CI=((WM**2)/05)*(QIN+(C2**2)*QP)

CC=SQRT(CI)

WRITE (6,*) CO,CC,ANS, IFLAG

GO TO 200

INDENTIFICATION FOR THIRD ORDER SYSTEM
CALCULATE THE FREQUENCY BAND FOR IDENTIFICATION

IA=WA/DF

IB=WB/DF

II=IA-]
NF=(IB-IA)+1
WRITE(6, *)NF, IA, IB

FORMING THE IDETIFICATION MATRIX

DO 100 I=IA,IB

J=1-11

EU=W(I)**2

EV=-2.*C2* (W(1)**4)

EE=WM**2- (W(I)**2)

EW=(C2%%*2)* (EE**2)
QO(I)=COE(1)+COE(2)*W(I)+COE(3)*(W(I)**2)
X1(J,1)=EU

X1(J,2)=EV

X2(J,1)=QQ(I)-EW

CONTINUE

DO 105 I=1,2

DO 105 J=1,2

XP(1,J)=0.0

DO 105 K=1,NF.
XP(1,J)=XP(I,J)+X1(K,1)*X1(K,J)

8
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105 CONTINUE
DO 104 I=1,2
DO 104 K=1,NF
] XT1(I,K)=X1(K,1)
- 104 CONTINUE
CALL MATINV(XP,MP,XPI)
DC 106 I=1,2
L WRITE(6,15) (XPI(I,J),J=1,2)
' 106 CONTINUE
- DO 110 I=1,2
5 DO 110 J=1,NF -
T XTT(1,J)=0.0 ' Y
DO 110 K=1,2 )
110 XTT(I,J)=XTT(I,J)+XPI(I,K)*XT1(K,J) o
DO 118 I=1,2
118 WRITE(6,37)(XTT(I,J),J=1,NF)
. DO 115 I=1,2
v B(I,1)=0.0
h DO 115 K=1,NF
115 B(I,1)=B(I,1)+XTT(I,K)*X2(K,1)
ol DO 119 I=1,2
B 119 WRITE(6,*) B(I,1)
? CK=SQRT(B(1,1))
. CL=B(2,1)/CK
2 WRITE(6, *)CK,CL
: : 35 FORMAT(24H REAL PART IMAGINAL PART)
! 37 FORMAT(6E12.4)
| 88 FORMAT(2E12.4)
. 200 STOP
END

ror o
O

e e 7Y
P P
nd. 4

FUNCTION QF IS A CONTINUOUS FUNCTION.
THE DATA QQ(I) WAS ARRANGED SO THAT THE FUNCTION
COULD BE CALLED IN ANY TIME.

aaaan

FUNCTION QF (WW)
DIMENSION W(1024),00(1024),S(1024), INDEX(1024)
COMMON /ARRAY/W,QQ, S, INDEX
N=512
X=WW
QT=SPLINE(N,W,QQ, S, INDEX, X)
QF=QT* (X**2)
RETURN
- END
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o~ c * PROGRAM NAME "PUR" *
(‘ ' C khkkhkdrhkkdbhkhrhkrrddhkbdthhrhhbrhkrdkhkhrddhrdhdrhdx
RO c THIS PROGRAM IDENTIFIES THE PARAMETERS OF A
S c TIME VARYING SECOND-ORDER LINEAR MODEL BY
e o USING THE PERTURBATION METHOD AND ITERATIVE
o C NEWTON- RAPHSON PROCEDURE. IT MAY ALSO USE
= c THE POLYNOMIAL FITTING APPROACH.
K C
: p COMPLEX FF(1024),FD(1024)
R COMPLEX 22(1024),HD,Z(1024),HABS(512)
o DIMENSION DD(1024),F(1024),HMOD(512),HZ(512)
R DIMENSION EK(3),COE(4),S(9), INDEX(9),AS(9)
L COMMON/ARRAY/FF, FD
= CALL OPSYS('ALLOC','FD1',10)
R CALL OPSYS('ALLOC', 'RH1',7)
SR, CALL OPSYS('ALLOC', 'NFL',4)
o EXTERNAL MATINV
AN C
E c SM : SYSTEM MASS
5 4 c ALPHA : DAMPING COEFFICIENT
SO c BETA : STIFFNESS COEFFICIENT
RS c 2ETA : DAMPING RATIO
Lo o c1 INITIAL GUESS 'DAMPING'
- c c2 INITIAL GUESS 'ALPHA*Cl'
o c c3 INITIAL GUESS 'STIFFNESS'
_ I c Cé : INITIAL GUESS 'BETA*C3'
IS c ESLON : ACCURACY MEASURE(FOR ESLON1-ESLON4")
L c W1-W4 : ACCURACY MEASURE FOR NEWTON METHOD
RO c DAl1-DA4 : INCREMENT VALUES
RO c
SM=1.0
d L Cl=1.5
O C2=0.02
o C3=37.5
S C4=-0.01
O ZETA=0.1
a ESLON1=0.02
- ESLON2=0.02
RO ESLON3=0.02
DR ESLON4=0.02 .
AN WN=SQRT (C3/SM
O DA1=0.01
< DA2=0.001
A DA3=1.0
. DA4:0.01
W1=0.01
o W2=0.01
AN W3=0.01
S W4=0.01
s PI=3.1415926535
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DT=0.05
M=10

N=2**M
NT=N/8
TT=DT*N
DW=2.*PI/TT
NS=N/2
CA=PI/NS

READ IN THE TIME DOMAIN RESPONSE
READ(10,80) (F(I),DD(I),I=1,N)
WINDOW THE DATA

DO 3 I=1,NS

IM=N-I+1
CMULT=0.5%(1.0-COS((I-1)*CA))
F(IM)=CMULT*F (IM)

DD ( IM)=CMULT*DD( IM)

CONTINUE

FFT THE INPUT AND RESPONSE

DO 8 I=1,N
FF(I)=CMPLX(F(I),0.0)*TT
2Z(I)=CMPLX(DD(I),0.0)*TT
CONTINUE

CALL FFT1(FF,M,N,-1.0)
CALL FFT1(2Z,M,N,-1.0)

FIND THE MOD(H)

DO 9 I=1,NT
FA=CABS(FF(I))
ZA=CABS(22(1))
HMOD(1)=2A/FA
CONT INUE

;3
B

CALCULATE THE DERIVATIVE OF FF

. B RO

DO 12 I=1,N

TC=(I1-1)*DT

F(I)=F(I)*TC
FD(I)=CMPLX(F(I),0.0)*TT
CONT INUE

CALL FFT1(FD,M,N,-1.)

DO 13 I=1,N
FD(I)=FD(I)*CMPLX(0.0,-1.)

.
s

K & SN
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FIND THE NUMBER OF PTS NEEDED IN THE BAND Y
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26
28

29

30

31

40

NC=(1.0*ZETA*WN)/DW
NW=WN /DW

NS=NW-NC

NF=NW+NC

AA1=C1

AA2=C2

AA3=C3

AA4=C4

L=1
WRITE(6,89)C1,C2,C3,C4
ICOUNT=2
1STEA=ICOUNT

AC1=C1

AC2=C2

AC3=C3

AC4=C4

CALL SUBROUTINE PURT TO FIND THE MODULUS
OF H FROM THE MEASURED INPUT

WN=SQRT (C3/SM)
NC=(1.0*ZETA*WN) /DW
=WN,/DW
NS=NW-NC
NF=NW+NC
CALL PURT(DW,NT,C1,C2,C3,C4,6H2Z)

FIND E(ERROR MEASURE)

EE=0.0

DO 30 I=NS,NF
E=HMOD(I)-HZ(I)
EE=EE+(E**2)

CONTINUE

EK( ICOUNT)=EE
IF(ICOUNT.EQ.3) GO TO 50
Go To (31,32,33,34),L
IF(ICOUNT.EQ.1) GO TO 40
Cc1=C1-DAl
ICOUNT=ICOUNT-1

GO TO 29

C1=AC1+DAl
ICOUNT=ISTEA+1

GO TO 29

IF(ICOUNT.EQ.1) GO TO 41
C2=C2-DA2
ICOUNT=ICOUNT-1

GO TO 29

C2=AC2+DA2
ICOUNT=ISTEA+1

GO TO 29

IF(ICOUNT.EQ.1) GO TO 42
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42

34

43

50
60

61

62

63

70

99
101

102
103
104

87
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C3=C3-DA3
ICOUNT=ICOUNT-1
GO TO 29
C3=AC3+DA3
ICOUNT=ISTEA+1
GO TO 29
IF(ICOUNT.EQ.1) GO TO 43
C4=C4-DA4
ICOUNT=1COUNT-1
GO TO 29
C4=AC4+DA4
ICOUNT=ISTEA+1
GO TO 29

CALCULATE THE FIRST AND SECOND DERIVETIVES

GO TO(60,61,62,63),L
TD=DA1

AV=AC1

W=W1

GO TO 70

TD=DA2

AV=AC2

W=W2

GO TO 70

TD=DA3

AV=AC3

W=W3

GO TO 70

TD=DA4

AV=AC4

W=W4

GO TO 70
DEK=(EK(3)~EK(1))/(2.0*TD)
DDEK=(EK(3)-2.*EK(2)+EK(1))/(TD**2)

DO THE NEWTON RAPHSON METHOD

ACC=AV- (DEK/DDEK)
WE=ABS ( (ACC-AV) /ACC)
WD=WE-W

IF(WD.LE.O0.0) GO TO 87
GO TO(101,102,103,104),L
C1=ACC

GO TO 28

C2=ACC

GO TO 28

C3=ACC

GO TO 28

C4=ACC

GO TO 28

GO TO(92,93,94,95),L
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92 Cl=ACC
GO TO 85
93 Cc2=ACC ’
GO TO 85
y 94 C3=ACC
GO TO 85
. 95 C4=ACC
Ry 85 L=L+1
IF(L.EQ.5) GO TO 100
GO TO 28

"’/"/"

COMPARE THE PARAMETERS

Qoo

100 CD1=ABS((AA1l-C1l)/Cl)
CD2=ABS ( (AA2-C2)/C2)
_ CD3=ABS( (AA3-C3)/C3)
. CD4=ABS ( (AA4-C4&)/C4&)
IF(CD1.GT.ESLON1) GO TO 81
IF(CD2.GT.ESLON2) GO TO 81
~ IF(CD3.GT.ESLON3) GO TO 81
L 1F(CD3.GT.ESLON4) GO TO 81
WRITE(6,*) C1,C2,C3,C4
GO TO 88
81 AAl=C1
AA2=C2
T AA3=C3
! AA4=C4
" GO TO 26
80 FORMAT(2E12.4)
82 FORMAT(3E13.4)
89 FORMAT(4E1l2.4)
150 FORMAT(2E16.6)
- 88 STOP
N END

AP

PERTURBATION METHOD

aaa

SUBROUTINE PURT(DW,NT,C1,C2,C3,C4,HA)
COMPLEX FF(1024),FD(1024),HABS(512),2(512)
COMPLEX HD,H,HDEV,H1,H2,H3,H4
DIMENSION HA(NT)
COMMON/ARRAY/FF, FD
SM=1.0

- , DO 14 I=1,NT

e W=(I~1)*DW

=CMPLX ( (C3-SM* (W**2)),W*C1)

H=1.0/HD
HDEV=CMPLX( (2. *SM*W),-C1)/(HD**2)
H1=H*FF(I)

, H2=C2+H* (H1+W* (HDEV*FF (I )+H*ED(I)))

t H3=CMPLX (0.0, -C4&) *H* (HDEV*FF(1)+H*FD(I))
Z(1)=H1+H2+H3
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H4=HDEV+H* (FD(I)/FF(1))
HABS(I)=H*(1.0+C2*(H+W*H4)-CMPLX(0.0,C4)*H4)
HA(I)=CABS(HABS(I))
| 14 CONTINUE

GO TO 10
10 RETURN
~5 END
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* PROGRAM "MDFID" *
[ZZZ XXX ZZEZZZL SRS AR RS R SRS R R R R 2 2 X4

IDENTIFICATION OF MDF SYSTEM

oo

- DIMENSION F2(1024),Y1(1024),Y2(1024),W(50),CT(6)
i COMPLEX Y1FT(1024),Y2FT(1024),F2FT(1024),AINV(2,2)
e COMPLEX B(2,2),H(2,2),H12,H22,A(2,2),B1,B2,CD
L COMPLEX AA(2,2),BB(2,2),AAIN(2,2),B11,B22
DIMENSION EPS1(50),EPSZ(50),Y1T(100),Y2T(100),CC(6)
£ DIMENSION C(6),DC(6),Y11(100),Y¥22(100),ERROR(100)
<] DIMENSION CCOUNT(6),E2(20)
REAL M1,M2 ,MC,COE(5)
.. CALL OPSYS('ALLOC', 'RH3', 14)
~ CALL OPSYS('ALLOC',6 'MDF1',10)

< c CALL OPSYS('ALLOC','MOD1',13)
EXTERNAL INVERS . '
: c
i c SET PARAMETERS
c
c DT:TIME STEP
c DW:DELTA W
c NT:NUMBER OF TIME STEP
c M1:MASS FOR 1ST DEGREE OF FREEDOM
o c M2:MASS FOR 2ND DEGREE OF FREEDOM
- c NWA:NUMBER OF FFT FREQ. WHERE ANALYSIS STARTS
c NID:NUMBER OF PARAMETERS IDENTIFIED
c NW:NUMBER OF FREQUENCIES WHERE ANALYSIS DONE
c NCUV:NUMBER OF PTS TO DEFINE THE CURVE
c W1:1ST FREQUENCY WHERE ANALYSIS DONE
= c NCY:NUMBER OF ITERATION WILL BE PERFORMED a
o c C(J),J=1,6 :SYSTEM PARAMETERS o
- c DC(J),J=1,6 :INCREMENT FOR C(J) B
. c IORDER: 3=THIRD-ORDER; 2=SECOND-ORDER s
- c
i NCOL=2 gji
IORDER=3 =
I1SMOTH=1 :
DT=0.05 ]
NT=1024 :
. N3=1024/2 e
y NCY=20
bi NID=6 ':‘i
N
; o
e
-
.-
2y
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SR
e F
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RN NCUV=7
o M=10

M1=1.0
M2=1.0

INITIAL GUESS

Qo

€(1)=30.0
c(2)=1.5
c(3)=0.01
C(4)=25.0
c(5)=2.0
C(6)=0.01
DC(1)=1.0
DC(2)=0.05
DC(3)=0.001
DC(4)=1.0
DC(5)=0.05
DC(6)=0.001
ACUR=0. 02
PI=3.1425926
CA=PI/NS
TT=DT*NT
DW=2.0*PI/TT
NW=30
NWA=30 .
W1=NWA*DW
DO 111 I=1,NW
111 W(I)=W1l+(I-1)*DW
W2=W (NW)
DO 112 I=1,NID
112 CT(I)=C(I)
MC=M1+M2

A R RPN s BRI

READ INPUT AND REPONSE THEN FFT

QaaQa

READ(10,12) (Y1(I),Y2(I),I=1,NT)
READ(14,16) (F2(I),I=1,NT)

COMPUTE THE RELATIVE DISPLACEMENT AND
SMOOTH THE INPUT FUNCTIONWHEN IF NECESSARY

aQaaQa

- DO 37 I=1,NT
NN 37 ¥2(I)=¥2(I)-Y1(I)
e IF(ISMOTH.NE.1) GO TO 39
P DO 36 I=1,NS
Lo IM=NT-I+1
AR CMULT=0.5%(1.0-COS((I-1)*CA))
L Y1(IM)=CMULT*Y1(IM)
- Y2 (IM)=CMULT*Y2(IM)
F2(IM)=CMULT*F2(IM)
36 CONTINUE

3
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39 DO 18 I=1,NT

P~
aaa

CALCULATE THE FFT ' .*

g Y1FT(I)=CMPLX(Y1(I),0.0)*TT B

T Y2FT(I)=CMPLX(Y2(I),0.0)*TT -l

S F2FT(I)=CMPLX(F2(I),0.0)*TT ]

Lo 18 CONTINUE »

CALL FFT1(Y1FT,M,NT,-1.0) o

- CALL FFT1(Y2FT,M,NT,-1.0) X
o CALL FFT1(F2FT,M,NT,-1.0)

FIND MODULI OF Y1FT, Y2FT

aaQa
A A

.
miiliine

NB=NW+NWA
DO 20 I=NWA,NB
A Y1(I)=CABS(Y1FT(I))
o Y2 (1)=CABS(Y2FT(I))
WW=(I-1)*DW
e C 20 WRITE(13,17)WW,Y1(I),Y2(I)
o 20 CONTINUE
IF(IORDER.EQ.2) GO TO 122
GO TO 123

L T
. A
POPRTRT RS o7 BY

1 2SR
B SRR

PR SR -

CHANGE THE ORDER OF INITIAL VALUES

aQaaQan

' 122 NID=4 ' o
' C(1)=C(1) 3
c(2)=Cc(2) - ]

- C(3)=C(4) -
O C(4)=C(5) 3
. DC(1)=DC(1) ]
- DC(2)=DC(2) 1|

; DC(3)=DC(4) »
DC(4)=DC(5) "

. DO 133 I=1,NID -3
S, CT(I)=C(I) T
o 133 CONTINUE B

IDENTIFICATION START

aaaQ

N 123 DO 99 INDEX=1,NCY
ICOUNT=1
DO 98 IDX=1,NID
CC(IDX)=C(IDX)

105 DO 97 IX=1,6NCUV
CT(IDX)=C(IDX)-(4-IX)*DC(IDX)
IF(IX.EQ.1) CTI=CT(IDX)

DO 96 IW=1,6NW

fe s

- o]
; ty C COMPUTE COEFFICIENTS
C

[ 3% N S W N

1
4
X
L]
.
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IF(IORDER.EQ.2)GO TO 200

B1=CMPLX(1.0,W(IW)*CT(3))

B2=CMPLX(1.0,W(IW)*CT(6))

Bll=(W(IW))**2+*MC*B1

B22=(W(IW))**2*M2*B2
A(1l,1)=CMPLX(CT(1)-REAL(B11),CT(2)*W(IW)-AIMAG(B11))
A(1,2)=-(W(IW))**2*M2*B1

A(2,1)=-B22
A(2,2)=CMPLX(CT(4)-REAL(B22),CT(5)*W(IW)-AIMAG(B22))
CALL MATINV(A,2,AINV)

B(1,1)=B1

B(1,2)=Bl

B(2,1)=CMPLX(0.0,0.0)

B(2,2)=B2

CALL MULTI(AINV,2,2,B,NCOL,H)

GO TO 205

CALCULATION FOR SECOND ORDER

AA(1,1)=CMPLX(CT(1)-MC*(W(IW))**2,CT(2)*W(IW))
AA(2,2)=CMPLX{CT(3)-M2*(W(IW))**2,CT(4)*W(IW))
AA(1,2)=CMPLX(-M2*(W(IW))**2,0.0)
AA(2,1)=AA(1,2)

BB(1,1)=CMPLX(1.0,0.0)

BB(1,2)=CMPLX(1.0,0.0)

BB(2,1)=CMPLX(0.0,0.0)

BB(2,2)=CMPLX(1.0,0.0)

CALL MATINV(AA,2,AAIN)

CALL MULTI(AAIN,2,2,BB,NCOL,H)

H12=H(1,2)

H22=H(2,2)

Y1T(IW)=CABS (H12*F2FT(NWA+IW-1))

Y2T (IW)=CABS (H22*F2FT (NWA+IW-1))
Y11(IW)=Y1(NWA+IW-1)

Y22 (IW)=Y2 (NWA+IW-1)

CALCULATE THE ERROR TERM

EPS1(IW)=Y11(IW)-Y1T(IW)
EPS2(IW)=Y22 (IW)-Y2T(IW)
CONTINUE

E2(IX)=0.0

SUMMATION OF ERROR

DO 121 I=1,NW
E2(IX)=E2(IX)+EPS1(I)**2+EPS2(I)**2
WRITE(6,12) CT(IDX),E2(IX)

CONTINUE

WRITE(6,25)

FIT THE E2(IX) IN A POLYNOMIAL EQUATICN BY

W

)
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-
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103

98

Qo

19_

95
9S
100

12
16
17
19
23
25
87

aaQn

15
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USING THE LEAST SQUARE METHODAND THEN FIND
THE CORRESPONDING FREQUENCY WHERE THE CURVE
HAS A MINIMUM

CALL FIT1(E2,3,NCUV,CTI,DC(IDX),COE)
CHECK THE CUVATURE

CT(IDX)=-COE(2)/(2.0*COE(3))
C(IDX)=CT(IDX)
CCOUNT ( ICOUNT )=CT( IDX)
ICOUNT=ICOUNT+1

CONTINUE
ERROR( INDEX ) =E2 (NCUV )
ACU=ABS (ERROR ( INDEX-1) -ERROR { INDEX) ) /JERROR ( INDEX )
IF(ACU.LT.1.0E-3) GO TO 100
DO 191 I=1,NID

RATIO=ABS (CCOUNT(I)-CC(I))/CC(I)
IF(RATIO.LE.ACUR) GO 12 191
GO TO 95

CONTINUE

GO TO 100
WRITE(6,19)(C(I),I=1,NID)
CONTINUZ

WRITE(6, *)(C(I),I=1,NID)

GO TO 87

FORMAT(2E12.4)

FORMAT (E12.4)

FORMAT (3E12.4)

FORMAT (6E12.4)

FORMAT (4E12.4)

FORMAT (/)

STOP

END

MATRIX MULTIPLICATION

SUBROUTINE MULTI(TA,N,M,TB,L,TC)
COMPLEX TA(N,M),TB(M,L),TC(N,L)
DO 15 I=1,N

DO 15 J=1,L

TC(1,J)=0.0

DO 15 K=1,M
TC(I,J)=TC(I,J)+TA(I,K)*TB(K,J)
RETURN

END

Ak k kIR IR AR I AR AR AT A b AR AR AR Ak A **
* PROGRAM "MDFID" *

IR SRR Z R AR EA SRS AR SR EXE R SRR R R R R R RE

A COMPUTER PROGRAM FOR THE ANALYSIS CF THE
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LINEAR RESPONSE OF HIGH ORDER MDF SYSTEM

MM =HIGHEST DERIVATIVES

NT =NUMBER OF POINTS ANALYZED

DT =TIME STEP

A(J,K,L)=(AJ)

X0(J,K)=JTH DERIVATIVES OF STATE VECTOR AT TIME T
DX(J,K)=DELTA OF JTH DERIVATIVES

XN(J,K)=JTH DERIVATIVES OF STATE VECTOR AT TIME T+DT
F(J,K) =JTH FORCE AT TIME K

DIMENSION A(4,2,2),X0(4,2),DX(4,2),XN(4,2),CA(2,2)
DIMENSION CB(2,2),F(2,1024),DM(2,2),AMI(2,2),FT(5)
DIMENSION DV(2),DU(2),DW(2),DN(2,2),DR(2),FF(1024)
DIMENSION FK(5),DD(4,2),DE(4,2),DF(2),FD(1024)
DIMENSION ENED1(1024),ENED2(1024),FDD(2,1024)
CALL OPSYS('ALLOC','RH1',10)

CALL OPSYS('ALLOC','MDF2',16)

SPECIFY DATA(AJ)=A(J,K,L)

A(1,1,1)=29.07
A(1,1,2)=0.0

0
8
0
.0
0
0
0

.0082*A(3,1,1)
.0082*A(3,1,2)
.0048*A(3,2,1)
A(4,2,2)=0.0048*A(3,2,2)

W mnmununnms
OOOMKHKHHKMO

M=4 MEANS THIRD-ORDER; M=3 MEANS SECOND-ORDER

M=4
MM=M-1
DT=0.05

1.808
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14

18

20

93

91

121

131

1421

150

151

le6l

171

CONTINUE
READ THE INPUT

READ(10,18) (FF(I),FD(I),I=1,NT)
FORMAT (2E12.4)

DO 20 I=1,NT
F(2,I)=FF(I)
F(1,1)=FF(I)

CONTINUE

IF(M.NE.4) GO TO 91

DO 93 I=1,NT
FDD(1,I)=ED(I)*A(4,1,2)
FDD(2,I)=FD(I)*A(4,2,2)
CONTINUE

FIND A(M) AND ITS INVERSE

DO 121 I=1,2

DO 121 J=1,2
DM(I,J)=A(M,I,J)
CALL MATINV(DM,2,AMI)

FACTOR COMPUTATION

FT(M)=1.0

DO 131 J=2,M

JI=M+1=-J
FT(JJ)=FT(JJ+1)*FLOAT(J)

CALCULATE THE CONSTANT VALUES OF EQ 13

DO 141 K=1,2
DO 141 L=1,2

CA(K,L)=0.0

DO 151 J=1,MM
AC=(DT**(M-J))/FT(J)

DO 150 K=1,2

DO 150 L=1,2
CA(K,L)=CA(K,L)+AC*A(J,K,L)
CONTINUE

DO 161 K=1,2

DO 161 L=1,2
DM(K,L)=CA(K,L)

CALL MULT(AMI,DM,CA,2)

DO 171 K=1,2
CA(K,K)=CA(K,K)+1.0

CALL MATINV(CA,2,DM)

CALL MULT(DM,AMI,CA,2)

FACTOR COMPUTATION

---------------
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FK(1)=1.0
DO 173 J=2,5
E FK(J)=FK(J-1)*FLOAT(J-1)
173 CONTINUE

START THE COMPUTATION LOOP

LT
oaQn

WRITE(16,26)T,X0(1,1),X0(1,2)

R DO 999 INDEX=2,NT

2 T=(INDEX-1)*DT
c
c SOLVE EQ 13

N c (CALCULATE THE DIFFERENCES OF MTH DERIVATIVES)
e .

DO 181 J=1,2

E@ 181 DW(J)=0.0

- DO 191 J=1,MM
LIM=M-J

N DO 183 L=1,2

E 183 DV(L)=0.0

DO 185 K=1,LIM
AC=(DT**K) /FK(K+1)
Ei JK=J+K
DO 184 L=1,2 |
184 DV(L)=DV(L)+AC*X0(JK,L)

! 185 CONTINUE
‘ DO 186 K=1,2
DO 186 L=1,2
e 186 DN(K,L)=A(J,K,L)

CALL MULV(DN,DV,DU, 2)
DO 187 I=1,2

187 DW(I)=DU(I)+DW(I)
r 191 CONTINUE
< . DO 201 I=1,2

201 DF(I)=F(I, INDEX)-F(I,INDEX-1)+
£ +(FDD(I, INDEX)-FDD(I, INDEX-1))
o Do 211 I=1,2

211 DV(I)=DF(I)-DW(I)
~ CALL MULV(CA,DV,DW,2)
% DO 221 1=1,2
- 221 DX(M, I)=DW(I)

SOLVE EQ 7
(CALCULATE THE DIFFERENCES OF JTH DERIVATIVES)

anna

w DO 261 J=1,MM
4 DO 230 1=1,2
230 DV(I)=0.0
- LIM=M-J
DO 231 K=1,LIM
AC=(DT**K)/(FK(K+1))
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241
261

269
271
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311

JR=J+K

DO 228 L=1,2
DV(L)=DV(L)+AC*XO(JK,L)
CONTINUE :
AC=(DT**(M-J))/FT(J)

DO 241 I=1,2
DX(J,I)=DV(1)+AC*DX(M,I)
CONTINUE

SOLVE EQ 14(SOLUTIONS)

DO 271 J=1,MM

DO 269 L=1,2
XN(J,L)=X0(J,L)+DX(J,L)
CONTINUE

SOLVE EQ 16
(CALCULATE THE HIGHEST DERIVATIVES)

DO 281 I=1,2
DW(I)=0.0

DO 291 J=1,MM

DO 285 K=1,2
DV(K)=XN(J,K)

DO 285 L=1,2
DM(K,L)=A(J,K,L)

CALL MULV(DM,DV,DU,2)
DO 286 K=1,2
DW(K)=DU(K)+DW(K)
CONTINUE

DO 301 K=1,2

DW(K)=F (K, INDEX ) +FDD (K, INDEX ) -DW(K)
CALL MULV(AMI,DW,DV,2)
DO 311 K=1,2
XN(M,K)=DV(K)

WRITE(6,*)XN(M,1),XN(M,2)
PRINT OUT THE DISPLACEMENT

XRE=XN(1,2)-XN(1,1)
WRITE(16,26)T,XN(1,1),XN(1,2)
VEL1=XN(2,1)
VEL2=XN(2,2)-XN(2,1)
REACC=XN(3,2)-XN(3,1)

STORE VALUES AND SET XO EQUAL TO XN
ENED1 ( INDEX)=XN(2,1)*(F(2, INDEX)-

+2.0*AM1*XN(3,1)-AM2*XN(3,2))
ENED2 ( INDEX)=XN(2,2)*(F(2, INDEX)-
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+AM1*XN(3,1)-AM2*XN(3,2))

DO 321 J=1,M

DO 321 K=1,2

X0(J,K)=XN(J,K)

CONTINUE

CALL SIMP(ENED1,ENER1,DT,NT)
CALL SIMP(ENEDZ2,ENER2,DT,NT)
ENER=ENER1 +ENER2

WRITE(6,26) ENER1,ENER2,ENER
FORMAT (2E12.4)
FORMAT(3El12.4)

STOP

END

COMPUTE THE AREA UNDER THE CURVE

SUBROUTINE SIMP(X.E,D,N)
DIMENSION X(1024)
N2=N/2-1

E=X(1)

DO 1 I=1,N2

IA=2+1

IB=IA+1

E=E+4.0*X(IA)
E=E+2.0*X(IB)

CONTINUE

N3=N-1
E=E+0.5*X(N3)+1.5*X(N)
E=D*E/3.0

RETURN

END

MATRIX MULTIPLICATION

SUBROUTINE MULT(A,B,C,N)
DIMENSION A(N,N),B(N,N),C(N,N)
DO 1 I=1,N

DO 1 J=1,N

c(1,J)=0.0

DO 1 K=1,N
C(I,J)=C(I,J)+A(I,K)*B(K,J)
CONTINUE

RETURN

i, INL

SUBROUTINE MULV(A,B,C,N)
DIMENSION A(N,N),B(N),C(N)
DO 1 I=1,N

C(1)=0.0

DO 1 J=1,N
C(I)=C(I)+A(I,J)*B(J)
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£ E} 1 CONTINUE
A RETURN
: END
! SUBROUTINE MATINV(C,N,D)
¥ c MATRIX INVERSION C-INPUT D-OUTPUT
N 5 DIMENSION C(N,N),D(N,N)
1 DO 10 J=1,N
> DO 10 K=1,N

- 10 D(J,K)=0.0

) DO 11 K=1,N
< 11 D(K,K)=1.0
. P1=1.0
o Lo DO 55 I=1,N

ki P2=C(I1,I)
- DO 40 J=1,N
¥ E C(I,J)=C(I1,J)/P2
. 40 D(I,J)=D(I,J)/P2
G DO 51 IC=1,N ]
Y = P3=-C(IC,I)
i ﬁﬁ DO 50 K=1,N

IF(1C-1)21,51,21

’ 21 C(IC,K)=C(I,K)*P3+C(IC,K)

y S0 D(IC,K)=D(I,K)*P3+D(IC,K)

4 S1 CONTINUE _

P1=p2+P1

- IF((1+2)-N)55,53,55
) S3 DET=P1*((C(I+1,I+1)*C(1+2,1+2))-
54 +(C(I+2,1I+1)*C(I+1,1+2)))
gﬂ B 55 CONTINUE
IR DO 70 IT=1,N
S Do 70 Is=1,N
: 70 C(1T,IS)=D(IT,1S)
. RETURN
. Eg END
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* SELECTED SUBROUTINES *
RRR R RR AR R R PR ARSI R Rk Rk

SUBROUTINE SPCOEF(N,XN,FN, S, INDEX)
DIMENSION XN(N),EN(N),S(N), INDEX(N)
DIMENSION RHO(1024),TAU(1024)
NM1=N-1

ARRANGE THE NODES XN IN INCREASING ORDER.
STORE THE ORDER IN THE ARRAY INDEX.

Do 1 I=1,N
INDEX(I)=I

DO 3 I=1,NM1
IP1=I+1

Do 2 J=IP1,N
II=INDEX(I)
1J=INDEX(J)
IF(XN(II).LE.XN(IJ))GO TO 2
ITEMP=INDEX(I)
INDEX( I)=INDEX(J)
INDEX(J)=ITEMP
CONTINUE ,
CONTINUE

NM2=N-2

CALCULATE THE ELEMENTS OF THE ARRAYS RHO AND TAU.

RHO(2)=0.0

TAU(2)=0.0

DO 4 I=2,NMl

IIM1=INDEX(I-1)

II=INDEX(I)

IIP1=INDEX(I+1)
HIM1=XN(II)-XN(IIM1l)
HI=XN(IIP1)-XN(II)
TEMP=(HIM1/HI)*(RHO(I)+2.0)+2.0
RHO(I+1)=-1.0/TEMP
D=6.0*((FN(IIP1)~-FN(II))/HI-
+(FN(II)-FN(IIMl))/HIM1)/HI
TAU(I1+1)=(D-HIM1*TAU(I1)/HI)/TEMP

COMPUTE ARRAY OF SECOND DERIVATIVES S FOR
THE NATURAL SPLINE

$(1)=0.0

S(N)=0.0

DO S I=1,NM2

IB=N-1I
S(IB)=RHO(IB+1)*S(IB+1)+TAU(IB+1)
RETURN
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END
FUNCTION SPLINE(N,XN,EN, S, INDEX, X)
DIMENSION XN(N),EN(N),S(N), INDEX(N)

IF X.LT.XN(INDEX(1)), APPROXIMATE FUNCTION BY
THE STRAIGHT LINE WHICH PASSES THROUGH THE POINT
(XN(INDEX(1)),FN(INDEX(1)))AND WHOSE

SLOPE AGREES WITH THE SPLINE AT THAT POINT

aaaaan

I1=INDEX(1)

IF(X.GE.XN(I1))GO TO 1

I2=INDEX(2)

H1=XN(I2)-XN(I1l)
SPLINE=FN(I1l)+(X-XN(Il1))*((FN(I2)-FN(I1))
+/H1-H1*S(2)/6.0)

RETURN

IF X.GE.XN(INDEX(N)), APPROXIMATE FUNCTION BY

THE STRAIGHT LINE WHICH PASSES THROUGH THE POINT
(XN(INDEX(N)),FN(INDEX(N))) AND WHOSE SLOPE AGREES
WITH THE SLOP OF THE SPLINE AT THAT POINT.

aaaaaoaa

1  IN=INDEX(N)
IF(X.LE.XN(IN))GO TO 2.
INM1=INDEX(N-1) _
HNM1=XN( IN)~XN(INM1)
SPLINE=FN(IN)+(X-XN(IN))*((EN(IN)-EN(INM1))
+/HNM1+HENM1+*S(N-1)/6.0)
RETURN

FOR XN(INDEX(1)).LE.X.LE.XN(INDEX(N)) CALCULATE
SPLINE FIT. .

aaaqa

2 DO 3 I=2,N
II=INDEX(I) .
IF(X.LE.XN(II))GO TO 4
3 CONTINUE
4 L=I-1
IL=INDEX(L)
ILP1=INDEX(L+1)
A=XN(ILP1)-X
B=X-XN(IL)
HL=XN(ILP1)-XN(IL)
SPLINE=A*S(L)*(A**2/HL-HL)/6.0+B*S(L+1)*
+(B**2/HL-HL)/6.0-(A*FN(IL)+B*FN(ILP1))/HL
RETURN

END
FFT PROGRAM

I Y T Y I R TR L L
MULTIPLIED BY T WHEN USING THE FORWARD FFT
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Ff c DIVIDED BY DT FOR BACKWARD FET
* c SIGN =-1. FOR DFT, SIGN=1. FOR IDFT
C (22222 22222222222 222222 X222 222222222222 2R222 2 . z
! SUBROUTINE FFT1(A,N,NB, SIGN) P
COMPLEX A(NB),U,W,T oY
c :':'.'.
EI c DIVIDE ALL ELEMENT BY NB o
c
_ DO 1 J=1,NB L
f 1 A(J)=A(J)/NB o
: c 3
o] REORDER SEQUENCE o
Y Cc e
[ NBD2=NB/2 Lo
NBM1=NB-1 :

=1

A

DO 4 L=1,NBM1
IF(L.GE.J) GO TO 2
T=A(J)

E A(J)=A(L) —
A(L)=T
) 2 K=NBD2 ]
E 3 IF(K.GE.J) GO TO 4 e
J=J-K o
‘K=K/2 . r‘:-
GO TO 3
! 4 J=J+K -
c CALCULATE FET T
r. C Bty
2 PI=3.141592653589793 e
DO 6 M=1,N o
U=(1.0,0.0) - s
B ME=2++M
7 K=ME/2 ::.“:'
W=CMPLX (COS(PI/K),SIGN*SIN(PI/K))
1 DO 6 J=1,K o
T DO S L=J,NB,ME
LPK=L+K
- T=A(LPK)*U
v A(LPK)=A(L)-T :
5 A(L)=A(L)+T i
. 6 U=U*W ) i
RETURN
END
c Y
) SUBROUTINE SIMP(QF,A,B,ACC,ANS,ERROR,AREA, IFLAG) o
2 c
: c SIMP IS AN ADAPTIVE, ITERATIVE CODE BASED i
\ c ON SIMPSON'S RULE. IT IS DESIGNED TO EVALUATE THE Pt
E c DEFINITE INTEGRAL OF A CONTINUOUS FUNCTION WITH X
c FINITE LIMITS OF INTEGRATION.
g RN
) S

z




e

F - NAME OF FUNCTION WHOSE INTEGRAL IS DESIRED.
THE FUNCTION NAME F.MUST APPEAR IN AN EXTERNAL
STATEMENT IN THE CALLING PROGRAM.

A,B - LOWER AND UPPER LIMITS OF INTEGRATION.
ANS- APPROXIMATE VALUE OF THE INTEGRAL OF F(X)

{! FROM A TO B. v
i AREA - APPROXIMATE VALUE OF THE INTEGRAL OF 5

ABS(F(X)) FROM A TO B. ‘
E ERROR - ESTIMATED ERROR OF ANS. USER MAY WISH :
bS] TO EXTRAPOLATE BY FORMING ANS+ERROR TO GET WHAT IS

OFTEN A MORE ACCURATE RESULT, BUT NOT ALWAYS.

ACC - DESIRED ACCURACY OF ANS. CODE TRIES TO MAKE .

ABS(ERROR) .LE.ACC*ABS(AREA). o)

IFLAG = 1 FOR NORMAL RETURN. -
= 2 IF IT IS NECESSARY TO GO TO 30 LEVELS OR
USE A SUBINTERVAL TOO SMALL FOR MACHINE WORD
LENGTH. ERROR MAY BE UNRELIABLE IN THIS CASE.
= 3 IF MORE THAT 2000 FUNCTION EVALUATIONS
ARE USED. ROUGH APPROXIMATIONS ARE USED TO
COMPLETE THE COMPUTATIONS AND ERROR IS
USUALLY UNRELIABLE.

s TR

e

T
+ 2

aaoaoaaaaaoaoaaaaoaaanaoQaaanoaan

DIMENSION FV(5),LORR(30),F1T(30),F2T(30),F3T(30)
DIMENSION ARESTT(30),ESTT(30),EPST(30),PSUM(30)
DIMENSION DAT(30)

SET U TO APPROXIMATELY THE UNIT ROUND-OFF OF
SPECIFIC MACHINE (HERE IBM 360/67)

U = 9.0E-7

s E

IRARRANE

INITIALIZE

aoao aaan

FOURU=4.0*U
IFLAG=1 )
EPS=ACC
ERROR=0.0 N
- LVL=1
LORR(LVL)=1 .
PSUM(LVL)=0.0 =
ALPHA=A R
] DA=B-A
: AREA=0.0 -
X AREST=0.0 -
FV(1)=QF (ALPHA)
“ FV(3)=QF (ALPHA+0.5*DA)
oy FV(5)=QF (ALPHA+DA)
KOUNT=3 :
v WT=D} /6.0 N
H EST=* M (FV(1)+4.0*FV(3)+FV(5)) -

o
2 i
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'BASIC STEP'. HAVE ESTIMATE EST OF INTEGRAL
ON (ALPHA,ALPHA+DA). BISECT AND COMPUTE
ESTIMATES ON LEFT AND RIGHT HALF INTERVALS.
SIMILARLY TREAT INTEGRAL OF ABS(F(I)). SUM IS
BETTER VALUE FOR INTEGRAL AND DIFF/15.0 IS
APPROXIMATELY ITS ERROR.

DX=0.5*DA

FV(2)=QF (ALPHA+0.5*DX)

FV(4)=QF (ALPHA+1.5%DX)

KOUNT=KOUNT+2

WT=DX/6.0

ESTL=WT*(EV(1)+4&.0*EV(2)+EV(3))

ESTR=WT* (FV(3)+4.0*FV(4)+FV(5))

SUM=ESTL+ESTR

ARESTL=WT* (ABS(FV(1))+ABS(4.0*FV(2))+ABS(EV(3)))
ARESTR=WT* (ABS(EV(3) ) +ABS(4.0*EV(4))+ABS(EV(5)))
AREA=AREA+( (ARESTL+ARESTR)-AREST)

DIFF=EST-SUM

IF ERROR IS ACCEPTABLE, GO TO 2. 1IF INTERVAL
IS TOO SMALL OR TOO MANY LEVELS OR TOO MANY
FUNCTION EVALUATIONS, SET A FLAG

AND GO TO 2 ANYWAY.

IF(ABS(DIFF).LE.EPS*ABS(AREA) )GO TO 2
IF(ABS(DX) .LE.FOURU*ABS (ALPHA))GO TO 5
IF(LVL.GE.30)GO TO 5
IF(KOUNT.GE.2000)GO TO 6

HERE TO RAISE LEVEL. STORE INFORMATION TO
PROCESS RIGHT HALF INTERVAL LATER. INITIALIZE FOR
'BASIC STEP' SO AS TO TREAT LEFT HALF INTERVAL.

LVL=LVL+1
LORR(LVL)=0
F1T(LVL)=FV(3)
F2T(LVL)=FV(4)
F3T(LVL)=EV(5)
DA=DX
DAT(LVL)=DX
AREST=ARESTL
ARESTT (LVL)=ARESTR
EST=ESTL
ESTT(LVL)=ESTR
EPS=EPS/1.4
EPST(LVL)=EPS
FV(5)=FV(3)
FV(3)=FV(2)

GO TO 1

ACCEPT APPROXIMATE INTEGRAL SUM. IF IT WAS ON

Y
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A LEFT INTERVAL GO TO 'MOVE RIGHT'. 1IF A RIGHT
INTERVAL, ADD RESULTS TO FINISH AT THIS LEVEL.
ARRAY LORR (MNEMONI" FOR LEFT OR RIGHT TELLS
WHETHER LEFT OR RIGHT INTERVAL AT EACH LEVEL.

ERROR=ERROR+DIFF/15.0
IF(LORR(LVL).EQ.0)GO TO 4
SUM=PSUM(LVL) +SUM
LVL=LVL-1

IF(LVL.GT.1)GO TO 3
ANS=SUM

RETURN

'MOVE RIGHT'. RESTORE SAVED INFORMATION TO
PROCESS RIGHT HALF INTERVAL.

PSUM(LVL)=SUM
LORR(LVL)=1
ALPHA=ALPHA+DA
DA=DAT (LVL)
FV(1)=F1T(LVL)
FV(3)=F2T(LVL)
FV(5)=F3T(LVL)
AREST=ARESTT (LVL)
EST=ESTT(LVL)
EPS=EPST(LVL)
GO TO 1

ACCEPT 'POOR' VALUE. SET APPROPRIATE FLAGS.

IFLAG=2
GO TO 2
IFLAG=3
GO TO 2
END

SUBROUTINE SPCOEF (N, XN, FN, S, INDEX)
DIMENSION XN(N),EFN(N),S(N), INDEX(N)
DIMENSION RHO(1024),TAU(1024)
NM1=N-1

ARRANGE THE NODES XN IN INCREASING ORDER.
STORE THE ORDER IN THE ARRAY INDEX.

DO 1 I=1,N
INDEX(I)=I
DO 3 I=1,NM1
IP1=I+1

DO 2 J=IP1,N
II=INDEX(I)
IJ=INDEX(J)
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IF(XN(II).LE.XN(IJ))GO TO 2
ITEMP=INDEX(1I)

INDEX (I)=INDEX(J)
INDEX(J)=I1TEMP

CONTINUE

CONTINUE

NM2=N-2

CALCULATE THE ELEMENTS OF THE ARRAYS
RHO AND TAU.

RHO(2)=0.0

TAU(2)=0.0

DO 4 I=2,NM1
IIM1=INDEX(I-1)

II=INDEX(I)

IIP1=INDEX(I+1)
HIMI=XN(II)-XN(IIM1)
HI=XN(IIP1)-XN(II)
TEMP=(HIM1/HI)*(RHO(I)+2.0)+2.0
RHO(I+1)=-1.0/TEMP
D=6.0*((FN(IIP1)-FN(II))/HI

+-(FN(II)-FN(IIM1))/HIM1)/HI

TAU(I+1)=(D-HIM1*TAU(I)/HI)/TEMP

COMPUTE ARRAY OF SECOND DERIVATIVES S FOR
THE NATURAL SPLINE.

S(1)=0.0

S(N)=0.0

DO 5 I=1,NM2

IB=N-I
S(IB)=RHO(IB+1)*S(IB+1)+TAU(IB+1)
RETURN

END

FUNCTION SPLINE(N,XN,EN, S, INDEX, X)
DIMENSION XN(N),FN(N),S(N), INDEX(N)

IF X.LT.XN(INDEX(1)), APPROXIMATE FUNCTION

BY THE STRAIGHT LINE WHICH PASSES THROUGH THE
POINT (XN(INDEX(1)),EN(INDEX(1))) AND WHOSE SLOPE

AGREES WITH THE SLOPE OF THE SPLINE AT THAT POINT.

I1=INDEX(1)

IF(X.GE.XN(I1))GO TO 1

12=INDEX(2)

H1=XN(I2)-XN(I1)
SPLINE=FN(I1)+(X-XN(I1))*((FN(I2)-FN(I1))

+/H1-H1*5(2)/6.0)

RETURN

IF X.GE.XN(INDEX(N)), APPROXIMATE FUNCTION BY
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o) THE STRAIGHT LINE WHICH PASSES THROUGH THE POINT
o] (XN( INDEX(N)),EN(INDEX(N))) AND WHOSE SLOPE
! c AGREES WITH THE SLOPE OF THE SPLINE AT THAT POINT.
o]
1  IN=INDEX(N)
_ IF(X.LE.XN(IN))GO TO 2
28 INM1=INDEX(N-1)
N HNM1=XN( IN)-XN(INM1)
SPLINE=FN( IN)+(X~-XN(IN))*((FN(IN)~-FN(INM1))/HNM1
- ++HNM1*S(N-1)/6.0)
S RETURN

c o

FOR XN(INDEX(1)).LE.X.LE.XN(INDEX(N))
CALCULATE SPLINE FIT.

DO 3 I=2,N

II=INDEX(I)
IF(X.LE.XN(II))GO TO 4
CONTINUE

L=I-1

IL=INDEX(L)
ILP1=INDEX(L+1)
A=XN(ILPl1l)-X
B=X-XN(IL)
HL=XN(ILPl)-XN(IL)
SPLINE=A*S(L)*(A**2/HL-HL)/6.0+B*S(L+1)*(B**2/HL-HL)
+/6.0~-(A*EN(IL)+B*FN(ILP1))/HL
RETURN

END
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THIS SUBROUTINE IS FOR N*N MATRIX INVERSION
SUBROUTINE INVERS(B,N,A)

Q QQ0

IR

DOUBLE PRECISION A(2,2),B(2,2),C(2,2) .
DOUBLE PRECISION AMAX, TEMP,PIVOT
DIMENSION INDEX(4,2)

IF(N.GT.40) GO TO 134
DO 90 I=1,N
DO 90 J=1,N
A(I,J)=B(I1,J)

90 CONTINUE
DO 107 I=1,N
DO 107 J=1,N

107 B(I,J)=A(I,J)
DO 108 I=1,N

ke 108 INDEX(I,1)=0

e I1=0

109 =-1.0D0
E DO 110 I=1,N

=
A

A |

»
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IF(INDEX(I,1)) 110,111,110
111 DO 112 J=1,N

...................
........................




IF(INDEX(J,1)) 112,113,112
113 TEMP=DABS(A(I,J))

IF(TEMP-AMAX) 112,112,114
!l 114 IROW=I
1COL=J
. AMAX=TEMP
o 112 CONTINUE
£ 110 CONTINUE
: IF(AMAX) 225,115,116
- 116 INDEX(ICOL,1)=IROW.
i IF(IROW-ICOL) 119,118,119
119 DO 120 J=1,N
e TEMP=A( IROW, J)
e A(IROW,J)=A(ICOL,J)
L 120 A(ICOL,J)=TEMP
i II=II+1
7 INDEX(II,2)=ICOL
3 118 PIVOT=A(ICOL, ICOL)
A(ICOL, ICOL)=1.0DO0
PIVOT=1.0DO/PIVOT
E DO 121 J=1,N

121 A(ICOL,J)=A(ICOL,J)*PIVOT
. DO 122 I=1,N
&* IF(I-ICOL) 123,122,123
123 TEMP=A(I,ICOL)
. A(I, ICOL)=0.0D0
i DO 124 J=1,N
. 124 A(I,J)=A(I,J)-A(ICOL,J)*TEMP
122 CONTINUE
: GO TO 109
&. 125 ICOL=INDEX(1I,2)
IROW=INDEX (ICOL,1)
DO 126 I=1,N
B TEMP=A(1, IROW)
. A(I, IROW)=A(I, ICOL)
126 A(I,ICOL)=TEMP
Eg II=1I-1
: 225 IF(II) 125,127,125
127 DO 130 I=1.N
: DO 130 J=1.N
F: C(I,7)=0.0D0
. DO 130 K=1,N
130 C(I,J)=C(I,J)+B(I,K)*A(K,J)
GO TO 134
115 WRITE(6,133)
133 FORMAT(' ZERO PIVOT')
134 RETURN
END
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Y : INPUT

MP : DEGREE OF POLYNOMINAL

N :NUMBER OF POINT FOR THE FITTING

X1l : THE LOW X-AXIS VALUE

X2 : THE UPPER X-AXIS VALUE

A(I): THE COEFFICIENT OF THE POLYNOMINAL
A(1l): THE CONSTANT COEFFICIENT

SUBROUTINE FIT1(Y,MP,N,X1,X2,A)
DIMENSION XX(20,3),Y(20),X(20),XP(3,3),A(3)
DIMENSION EPS(20),D(3,3),B(3)
DX=(X2-X1)/FLOAT(N-1)

DO 10 I=1,N
X(I)=X1+FLOAT(I~-1)*DX

DO 1 I=1,N

XX(I1,1)=1.0

DO 1 J=2,MP

XX(I,J)=X(I)**(J-1)

DO 2 I=1,

DO 2 J=I,MP

XP(I,J)=XP(I,J)+XX(K,I)*XX(K,J)
DO 3 I=2,MP

IM=I-1

DO 3 J=1,IM

XP(I,J)=XP(J,I)

CALL MATINV(XP,MP,D)

DO 4 I=1,MP

<
|
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z

S I=1,MP
)

DO 5 J=1,MP
A(I)=A(I1)+D(I,J)*B(J)
RETURN

g

MATRIX INVERSION

SUBROUTINE MATINV(C,N,D)
MATRIX INVERSION C-INPUT D-OUTPUT
DIMENSION C(N,N),D(N,N)
DO 10 J=1,N

DO 10 K=1,N

D(J,K)=0.0

DO 11 K=1,N

D(K,K)=1.0

P1=1.0

DO 55 I=1,N

P2=C(I,1I)
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DO 40 J=1,N
c(1,3)=C(1,J3)/P2
40 D(I1,J)=D(I,J)/P2
DO 51 IC=1,N
P3=-C(IC,I)
DO 50 K=1,N
IF(IC-I)21,51,21
21 ¢(IC,K)=C(I,K)*P3+C(IC,K)
50 D(IC,K)=D(I,K)*P3+D(IC,K)
51 CONTINUE
P1=P2*P1
IF((I+2)-N)55,53,55
53 DET=P1#*((C(I+1,I+1)*C(I+2,61+2))-
+(C(I+2,I+1)*C(I+1,1+2)))
55 CONTINUE
DO 70 IT=1,N
DO 70 IS=1,N
70 C(IT,1S)=D(IT,1S)
RETURN

END







